Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321218

RESUMEN

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Encéfalo/fisiología , Odorantes , Feromonas , Olfato/fisiología , Conducta Animal
3.
Annu Rev Neurosci ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603564

RESUMEN

Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.

4.
Cell ; 170(4): 727-735.e10, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802042

RESUMEN

Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.


Asunto(s)
Hormigas/genética , Hormigas/fisiología , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/fisiología , Proteínas de Insectos/genética , Mutagénesis , Mutación , Odorantes , Receptores Odorantes/genética , Conducta Social
5.
Nature ; 612(7940): 488-494, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450990

RESUMEN

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Asunto(s)
Hormigas , Líquidos Corporales , Muda , Pupa , Conducta Social , Animales , Hormigas/crecimiento & desarrollo , Hormigas/fisiología , Larva/fisiología , Muda/fisiología , Pupa/fisiología , Líquidos Corporales/fisiología
6.
Proc Natl Acad Sci U S A ; 119(23): e2123076119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653573

RESUMEN

SignificanceIn this study, we ask how ant colonies integrate information about the external environment with internal state parameters to produce adaptive, system-level responses. First, we show that colonies collectively evacuate the nest when the ground temperature becomes too warm. The threshold temperature for this response is a function of colony size, with larger colonies evacuating the nest at higher temperatures. The underlying dynamics can thus be interpreted as a decision-making process that takes both temperature (external environment) and colony size (internal state) into account. Using mathematical modeling, we show that these dynamics can emerge from a balance between local excitatory and global inhibitory forces acting between the ants. Our findings in ants parallel other complex biological systems like neural circuits.


Asunto(s)
Hormigas , Conducta Social , Animales , Hormigas/fisiología , Toma de Decisiones , Temperatura
7.
PLoS Biol ; 19(6): e3001269, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138839

RESUMEN

The effects of heterogeneity in group composition remain a major hurdle to our understanding of collective behavior across disciplines. In social insects, division of labor (DOL) is an emergent, colony-level trait thought to depend on colony composition. Theoretically, behavioral response threshold models have most commonly been employed to investigate the impact of heterogeneity on DOL. However, empirical studies that systematically test their predictions are lacking because they require control over colony composition and the ability to monitor individual behavior in groups, both of which are challenging. Here, we employ automated behavioral tracking in 120 colonies of the clonal raider ant with unparalleled control over genetic, morphological, and demographic composition. We find that each of these sources of variation in colony composition generates a distinct pattern of behavioral organization, ranging from the amplification to the dampening of inherent behavioral differences in heterogeneous colonies. Furthermore, larvae modulate interactions between adults, exacerbating the apparent complexity. Models based on threshold variation alone only partially recapitulate these empirical patterns. However, by incorporating the potential for variability in task efficiency among adults and task demand among larvae, we account for all the observed phenomena. Our findings highlight the significance of previously overlooked parameters pertaining to both larvae and workers, allow the formulation of theoretical predictions for increasing colony complexity, and suggest new avenues of empirical study.


Asunto(s)
Conducta Animal/fisiología , Insectos/fisiología , Umbral Sensorial/fisiología , Conducta Social , Animales , Modelos Teóricos
8.
PLoS Biol ; 19(6): e3001305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34191794

RESUMEN

Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Oxitocina/metabolismo , Conducta Social , Vasopresinas/metabolismo , Envejecimiento/fisiología , Animales , Encéfalo/fisiología , Células HEK293 , Humanos , Oxitocina/química , Vasopresinas/química
9.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035172

RESUMEN

The mass raids of army ants are an iconic collective phenomenon, in which many thousands of ants spontaneously leave their nest to hunt for food, mostly other arthropods. While the structure and ecology of these raids have been relatively well studied, how army ants evolved such complex cooperative behavior is not understood. Here, we show that army ant mass raiding has evolved from a different form of cooperative hunting called group raiding, in which a scout directs a small group of ants to a specific target through chemical communication. We describe the structure of group raids in the clonal raider ant, a close relative of army ants in the subfamily Dorylinae. We find evidence that the coarse structure of group raids and mass raids is highly conserved and that all doryline ants likely follow similar behavioral rules for raiding. We also find that the evolution of army ant mass raiding occurred concurrently with expansions in colony size. By experimentally increasing colony size in the clonal raider ant, we show that mass raiding gradually emerges from group raiding without altering individual behavioral rules. This suggests that increasing colony size can explain the evolution of army ant mass raids and supports the idea that complex social behaviors may evolve via mechanisms that need not alter the behavioral interaction rules that immediately underlie the collective behavior of interest.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Evolución Biológica , Animales , Estereotipo
10.
Environ Microbiol ; 25(12): 3466-3483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968789

RESUMEN

The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.


Asunto(s)
Hormigas , Escarabajos , Microbiota , Animales , Hormigas/genética , Hormigas/microbiología , Filogenia , ARN Ribosómico 16S/genética , Larva , Bacterias/genética , Simbiosis
11.
J Chem Ecol ; 49(1-2): 1-10, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36759430

RESUMEN

Ants communicate via an arsenal of different pheromones produced in a variety of exocrine glands. For example, ants release alarm pheromones in response to danger to alert their nestmates and to trigger behavioral alarm responses. Here we characterize the alarm pheromone and the alarm response of the clonal raider ant Ooceraea biroi, a species that is amenable to laboratory studies but for which no pheromones have been identified. During an alarm response, ants quickly become unsettled, leave their nest pile, and are sometimes initially attracted to the source of alarm, but ultimately move away from it. We find that the alarm pheromone is released from the head of the ant and identify the putative alarm pheromone as a blend of two compounds found in the head, 4-methyl-3-heptanone and 4-methyl-3-heptanol. These compounds are sufficient to induce alarm behavior alone and in combination. They elicit similar, though slightly different behavioral features of the alarm response, with 4-methyl-3-heptanone being immediately repulsive and 4-methyl-3-heptanol being initially attractive before causing ants to move away. The behavioral response to these compounds in combination is dose-dependent, with ants becoming unsettled and attracted to the source of alarm pheromone at low concentrations and repulsed at high concentrations. While 4-methyl-3-heptanone and 4-methyl-3-heptanol are known alarm pheromones in other more distantly related ant species, this is the first report of the chemical identity of a pheromone in O. biroi, and the first alarm pheromone identified in the genus Ooceraea. Identification of a pheromone that triggers a robust, consistent, and conserved behavior, like the alarm pheromone, provides an avenue to dissect the behavioral and neuronal mechanisms underpinning chemical communication.


Asunto(s)
Hormigas , Feromonas , Animales , Feromonas/química , Hormigas/fisiología , Heptanol , Cetonas
12.
Proc Natl Acad Sci U S A ; 117(12): 6608-6615, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152103

RESUMEN

The scope of adaptive phenotypic change within a lineage is shaped by how functional traits evolve. Castes are defining functional traits of adaptive phenotypic change in complex insect societies, and caste evolution is expected to be phylogenetically conserved and developmentally constrained at broad phylogenetic scales. Yet how castes evolve at the species level has remained largely unaddressed. Turtle ant soldiers (genus Cephalotes), an iconic example of caste specialization, defend nest entrances by using their elaborately armored heads as living barricades. Across species, soldier morphotype determines entrance specialization and defensive strategy, while head size sets the specific size of defended entrances. Our species-level comparative analyses of morphotype and head size evolution reveal that these key ecomorphological traits are extensively reversible, repeatable, and decoupled within soldiers and between soldier and queen castes. Repeated evolutionary gains and losses of the four morphotypes were reconstructed consistently across multiple analyses. In addition, morphotype did not predict mean head size across the three most common morphotypes, and head size distributions overlapped broadly across all morphotypes. Concordantly, multiple model-fitting approaches suggested that soldier head size evolution is best explained by a process of divergent pulses of change. Finally, while soldier and queen head size were broadly coupled across species, the level of head size disparity between castes was decoupled from both queen head size and soldier morphotype. These findings demonstrate that caste evolution can be highly dynamic at the species level, reshaping our understanding of adaptive morphological change in complex social lineages.


Asunto(s)
Adaptación Biológica , Hormigas/anatomía & histología , Hormigas/fisiología , Evolución Biológica , Cabeza/anatomía & histología , Cabeza/fisiología , Jerarquia Social , Conducta Social , Animales , Hormigas/clasificación , Fenotipo , Filogenia
13.
Genome Res ; 28(11): 1757-1765, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30249741

RESUMEN

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.


Asunto(s)
Evolución Molecular , Proteínas de Insectos/genética , Receptores Odorantes/genética , Secuencia Rica en At , Animales , Hormigas/genética , Duplicación de Gen , Proteínas de Insectos/química , Receptores Odorantes/química , Retroelementos
14.
Proc Biol Sci ; 288(1958): 20211456, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34493081

RESUMEN

Social animals display a wide range of behavioural defences against infectious diseases, some of which increase social contacts with infectious individuals (e.g. mutual grooming), while others decrease them (e.g. social exclusion). These defences often rely on the detection of infectious individuals, but this can be achieved in several ways that are difficult to differentiate. Here, we combine non-pathogenic immune challenges with automated tracking in colonies of the clonal raider ant to ask whether ants can detect the immune status of their social partners and to quantify their behavioural responses to this perceived infection risk. We first show that a key behavioural response elicited by live pathogens (allogrooming) can be qualitatively recapitulated by immune challenges alone. Automated scoring of interactions between all colony members reveals that this behavioural response increases the network centrality of immune-challenged individuals through a general increase in physical contacts. These results show that ants can detect the immune status of their nest-mates and respond with a general 'caring' strategy, rather than avoidance, towards social partners that are perceived to be infectious. Finally, we find no evidence that changes in cuticular hydrocarbon profiles drive these behavioural effects.


Asunto(s)
Hormigas , Animales , Conducta Animal , Aseo Animal , Humanos , Hidrocarburos , Conducta Social
15.
Mol Ecol ; 30(20): 5229-5246, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34406688

RESUMEN

Tropical rainforests are among the most diverse biomes on Earth. While species inventories are far from complete for any tropical rainforest, even less is known about the intricate species interactions that form the basis of these ecological communities. One fascinating but poorly studied example are the symbiotic associations between army ants and their rich assemblages of parasitic arthropod guests. Hundreds of these guests, or myrmecophiles, have been taxonomically described. However, because previous work has mainly been based on haphazard collections from disjunct populations, it remains challenging to define species boundaries. We therefore know little about the species richness, abundance and host specificity of most guests in any given population, which is crucial to understand co-evolutionary and ecological dynamics. Here, we report a quantitative community survey of myrmecophiles parasitizing the six sympatric Eciton army ant species in a Costa Rican rainforest. Combining DNA barcoding with morphological identification of over 2,000 specimens, we discovered 62 species, including 49 beetles, 11 flies, one millipede and one silverfish. At least 14 of these species were new to science. Ecological network analysis revealed a clear signal of host partitioning, and each Eciton species was host to both specialists and generalists. These varying degrees in host specificities translated into a moderate level of network specificity, highlighting the system's level of biotic pluralism in terms of biodiversity and interaction diversity. By providing vouchered DNA barcodes for army ant guest species, this study provides a baseline for future work on co-evolutionary and ecological dynamics in these species-rich host-symbiont networks across the Neotropical realm.


Asunto(s)
Hormigas , Escarabajos , Animales , Hormigas/genética , Biodiversidad , Especificidad del Huésped/genética , Simbiosis/genética
16.
Mol Ecol ; 30(24): 6627-6641, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582590

RESUMEN

The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusually compact, with a reduced gene complement relative to other ants. In contrast to this overall reduction, a particular gene subfamily (9-exon ORs) expressed predominantly in female antennae is expanded. This subfamily has previously been linked to the recognition of hydrocarbons, key olfactory cues used in insect communication and prey discrimination. Confocal microscopy of the brain showed a corresponding expansion in a putative hydrocarbon response centre within the antennal lobe, while scanning electron microscopy of the antenna revealed a particularly high density of hydrocarbon-sensitive sensory hairs. E. burchellii shares these features with its predatory and more cryptic relative, the clonal raider ant. By integrating genomic, transcriptomic and anatomical analyses in a comparative context, our work thus provides evidence that army ants and their relatives possess a suite of modifications in the chemosensory system that may be involved in behavioural coordination and prey selection during social predation. It also lays the groundwork for future studies of army ant biology at the molecular level.


Asunto(s)
Hormigas , Adaptación Fisiológica , Animales , Hormigas/genética , Femenino , Genoma , Genómica , Conducta Predatoria
17.
Front Zool ; 18(1): 46, 2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34538256

RESUMEN

BACKGROUND: Ant colonies are plagued by a diversity of arthropod guests, which adopt various strategies to avoid or to withstand host attacks. Chemical mimicry of host recognition cues is, for example, a common integration strategy of ant guests. The morphological gestalt and body size of ant guests have long been argued to also affect host hostility, but quantitative studies testing these predictions are largely missing. We here evaluated three guest traits as triggers of host aggression-body size, morphological gestalt, and accuracy in chemical mimicry-in a community of six Eciton army ant species and 29 guest species. We quantified ant aggression towards 314 guests in behavioral assays and, for the same individuals, determined their body size and their accuracy in mimicking ant cuticular hydrocarbon (CHC) profiles. We classified guests into the following gestalts: protective, myrmecoid, staphylinid-like, phorid-like, and larval-shaped. We expected that (1) guests with lower CHC mimicry accuracy are more frequently attacked; (2) larger guests are more frequently attacked; (3) guests of different morphological gestalt receive differing host aggression levels. RESULTS: Army ant species had distinct CHC profiles and accuracy of mimicking these profiles was variable among guests, with many species showing high mimicry accuracy. Unexpectedly, we did not find a clear relationship between chemical host similarity and host aggression, suggesting that other symbiont traits need to be considered. We detected a relationship between the guests' body size and the received host aggression, in that diminutive forms were rarely attacked. Our data also indicated that morphological gestalt might be a valuable predictor of host aggression. While most ant-guest encounters remained peaceful, host behavior still differed towards guests in that ant aggression was primarily directed towards those guests possessing a protective or a staphylinid-like gestalt. CONCLUSION: We demonstrate that CHC mimicry accuracy does not necessarily predict host aggression towards ant symbionts. Exploitation mechanisms are diverse, and we conclude that, besides chemical mimicry, other factors such as the guests' morphological gestalt and especially their body size might be important, yet underrated traits shaping the level of host hostility against social insect symbionts.

18.
Biol Lett ; 16(6): 20200105, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32544382

RESUMEN

Identifying the native range of invasive species is useful to understand their evolution and natural history, as well as to develop new methods to control potentially harmful introduced organisms. The clonal raider ant, Ooceraea biroi, is an introduced species and an increasingly important social insect model organism, but its native range remains unknown. Here, we report a new series of O. biroi collections from Bangladesh, Singapore, Vietnam and China. We use a molecular phylogeny constructed with five gene fragments from 27 samples to determine that invasive lineages of O. biroi originated in Bangladesh. These lineages may have spread from Bangladesh via the historically significant Bay of Bengal shipping ports. Ooceraea biroi shares multiple features of its biology with other introduced ants, including parthenogenesis, retention of heterozygosity and presence of multiple egg-layers in the colony. Using laboratory rearing and microsatellite markers, we show that colonies collected from disturbed habitat in Bangladesh have these traits in common with colonies from the invasive range. Ancestral populations with sexual reproduction in primary habitats either remain to be discovered or have gone extinct. Our findings advance our understanding of the global spread of the clonal raider ant and highlight a suite of general traits that make certain ants prone to becoming invasive.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Bangladesh , China , Especies Introducidas , Singapur
19.
Mol Ecol ; 28(9): 2423-2440, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050080

RESUMEN

Army ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top-down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches. However, whether and to what extent this is achieved has not been intensively studied yet. We therefore conducted a large-scale diet survey of a community of surface-raiding army ants at La Selva Biological Station in Costa Rica. We systematically collected 3,262 prey items from eleven army ant species (genera Eciton, Nomamyrmex and Neivamyrmex). Prey items were classified as ant prey or non-ant prey. The prey nearly exclusively consisted of other ants (98%), and most booty was ant brood (87%). Using morphological characters and DNA barcoding, we identified a total of 1,103 ant prey specimens to the species level. One hundred twenty-nine ant species were detected among the army ant prey, representing about 30% of the known local ant diversity. Using weighted bipartite network analyses, we show that prey specialization in army ants is unexpectedly high and prey niche overlap very small. Besides food niche differentiation, we uncovered a spatiotemporal niche differentiation in army ant raid activity. We discuss competition-driven multidimensional niche differentiation and predator-prey arms races as possible mechanisms underlying prey specialization in army ants. By combining systematic prey sampling with species-level prey identification and network analyses, our integrative approach can guide future research by portraying how predator-prey interactions in complex communities can be reliably studied, even in cases where morphological prey identification is infeasible.


Asunto(s)
Hormigas/fisiología , Conducta Predatoria , Animales , Hormigas/clasificación , Costa Rica , Código de Barras del ADN Taxonómico , Pupa , Análisis Espacio-Temporal , Simpatría , Clima Tropical
20.
Proc Natl Acad Sci U S A ; 113(49): 14091-14096, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27911792

RESUMEN

A major aim of sociogenomic research is to uncover common principles in the molecular evolution of sociality. This endeavor has been hampered by the small number of specific genes currently known to function in social behavior. Here we provide several lines of evidence suggesting that ants have evolved a large and novel clade of odorant receptor (OR) genes to perceive hydrocarbon-based pheromones, arguably the most important signals in ant communication. This genomic expansion is also mirrored in the ant brain via a corresponding expansion of a specific cluster of glomeruli in the antennal lobe. We show that in the clonal raider ant, hydrocarbon-sensitive basiconic sensilla are found only on the ventral surface of the female antennal club. Correspondingly, nearly all genes in a clade of 180 ORs within the 9-exon subfamily of ORs are expressed exclusively in females and are highly enriched in expression in the ventral half of the antennal club. Furthermore, we found that across species and sexes, the number of 9-exon ORs expressed in antennae is tightly correlated with the number of glomeruli in the antennal lobe region innervated by odorant receptor neurons from basiconic sensilla. Evolutionary analyses show that this clade underwent a striking gene expansion in the ancestors of all ants and slower but continued expansion in extant ant lineages. This evidence suggests that ants have evolved a large clade of genes to support pheromone perception and that gene duplications have played an important role in the molecular evolution of ant communication.


Asunto(s)
Comunicación Animal , Hormigas/genética , Evolución Molecular , Receptores Odorantes/genética , Sensilos/anatomía & histología , Animales , Hormigas/anatomía & histología , Hormigas/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Receptores Odorantes/metabolismo , Sensilos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA