Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(4): e112118, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594367

RESUMEN

Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.


Asunto(s)
Células Ciliadas Auditivas Internas , Transducción de Señal , Animales , Células Ciliadas Auditivas Internas/fisiología , Potenciales de Acción/fisiología , Cóclea/fisiología , Mamíferos
2.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30804003

RESUMEN

Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine-tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non-sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non-sensory cells of the greater epithelial ridge cause, via ATP-induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience-independent Ca2+ signals from sensory and non-sensory cells.


Asunto(s)
Vías Aferentes , Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Cóclea/fisiología , Conexina 30/fisiología , Células Ciliadas Auditivas Externas/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales de Acción , Animales , Señalización del Calcio , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Purinérgicos P2X3/fisiología , Sinapsis/fisiología
3.
J Physiol ; 598(1): 151-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661723

RESUMEN

KEY POINTS: Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+ -induced action potentials (APs) during immature stages of development, which are driven by CaV 1.3 Ca2+ channels. We also showed that the development of low- and high-frequency hair cells is differentially regulated during pre-hearing stages, with the former cells being more strongly dependent on experience-independent Ca2+ action potential activity. ABSTRACT: Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV 1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near-physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV 1.3-/- mice, prevented the normal developmental acquisition of mature-like basolateral membrane currents in low-frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV 1.3-/- mice. The maturation of high-frequency (basal) hair cells was also affected in CaV 1.3-/- mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV 1.3-/- mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low- and high-frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience-independent Ca2+ APs.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas Externas/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Células Ciliadas Auditivas Internas/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Ratones Noqueados
4.
J Neurosci ; 36(2): 336-49, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758827

RESUMEN

The transduction of sound into electrical signals depends on mechanically sensitive ion channels in the stereociliary bundle. The molecular composition of this mechanoelectrical transducer (MET) channel is not yet known. Transmembrane channel-like protein isoforms 1 (TMC1) and 2 (TMC2) have been proposed to form part of the MET channel, although their exact roles are still unclear. Using Beethoven (Tmc1(Bth/Bth)) mice, which have an M412K point mutation in TMC1 that adds a positive charge, we found that Ca(2+) permeability and conductance of the MET channel of outer hair cells (OHCs) were reduced. Tmc1(Bth/Bth) OHCs were also less sensitive to block by the permeant MET channel blocker dihydrostreptomycin, whether applied extracellularly or intracellularly. These findings suggest that the amino acid that is mutated in Bth is situated at or near the negatively charged binding site for dihydrostreptomycin within the permeation pore of the channel. We also found that the Ca(2+) dependence of the operating range of the MET channel was altered by the M412K mutation. Depolarization did not increase the resting open probability of the MET current of Tmc1(Bth/Bth) OHCs, whereas raising the intracellular concentration of the Ca(2+) chelator BAPTA caused smaller increases in resting open probability in Bth mutant OHCs than in wild-type control cells. We propose that these observations can be explained by the reduced Ca(2+) permeability of the mutated MET channel indirectly causing the Ca(2+) sensor for adaptation, at or near the intracellular face of the MET channel, to become more sensitive to Ca(2+) influx as a compensatory mechanism. SIGNIFICANCE STATEMENT: In the auditory system, the hair cells convert sound-induced mechanical movement of the hair bundles atop these cells into electrical signals through the opening of mechanically gated ion channels at the tips of the bundles. Although the nature of these mechanoelectrical transducer (MET) channels is still unclear, recent studies implicate transmembrane channel-like protein isoform 1 (TMC1) channels in the mammalian cochlea. Using a mutant mouse model (Beethoven) for progressive hearing loss in humans (DFNA36), which harbors a point mutation in the Tmc1 gene, we show that this mutation affects the MET channel pore, reducing its Ca(2+) permeability and its affinity for the permeant blocker dihydrostreptomycin. A number of phenomena that we ascribe to Ca(2+)-dependent adaptation appear stronger, in compensation for the reduced Ca(2+) entry.


Asunto(s)
Antibacterianos/farmacología , Calcio/metabolismo , Sulfato de Dihidroestreptomicina/farmacología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Proteínas de la Membrana/genética , Mutación Puntual/genética , Animales , Animales Recién Nacidos , Calcio/farmacología , Quelantes/farmacología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células Ciliadas Auditivas Externas/fisiología , Técnicas In Vitro , Mecanotransducción Celular/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Órgano Espiral/citología , Técnicas de Placa-Clamp
5.
Proc Natl Acad Sci U S A ; 111(41): 14918-23, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25228765

RESUMEN

Mechanotransduction in the auditory and vestibular systems depends on mechanosensitive ion channels in the stereociliary bundles that project from the apical surface of the sensory hair cells. In lower vertebrates, when the mechanoelectrical transducer (MET) channels are opened by movement of the bundle in the excitatory direction, Ca(2+) entry through the open MET channels causes adaptation, rapidly reducing their open probability and resetting their operating range. It remains uncertain whether such Ca(2+)-dependent adaptation is also present in mammalian hair cells. Hair bundles of both outer and inner hair cells from mice were deflected by using sinewave or step mechanical stimuli applied using a piezo-driven fluid jet. We found that when cochlear hair cells were depolarized near the Ca(2+) reversal potential or their hair bundles were exposed to the in vivo endolymphatic Ca(2+) concentration (40 µM), all manifestations of adaptation, including the rapid decline of the MET current and the reduction of the available resting MET current, were abolished. MET channel adaptation was also reduced or removed when the intracellular Ca(2+) buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was increased from a concentration of 0.1 to 10 mM. The findings show that MET current adaptation in mouse auditory hair cells is modulated similarly by extracellular Ca(2+), intracellular Ca(2+) buffering, and membrane potential, by their common effect on intracellular free Ca(2+).


Asunto(s)
Adaptación Fisiológica , Calcio/metabolismo , Células Ciliadas Auditivas/fisiología , Activación del Canal Iónico , Canales Iónicos/metabolismo , Mecanotransducción Celular , Estereocilios/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Animales , Calcio/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Espacio Extracelular/metabolismo , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/fisiología , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Ratones , Estereocilios/efectos de los fármacos
6.
J Physiol ; 594(13): 3667-81, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27111754

RESUMEN

KEY POINTS: The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli. In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles. We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop. We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. ABSTRACT: Mutations in Myo6, the gene encoding the (F-actin) minus end-directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells' apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano-electrical transduction. We report that Ca(2+) -dependent adaptation of the mechano-electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links, fails to be downregulated along the length of the stereocilia in maturing Myo6 mutant mice. MET currents of heterozygous littermates appear normal. We propose that myosin VI, by removing key molecules from developing hair bundles, is required for the development of the MET apparatus and its Ca(2+) -dependent adaptation.


Asunto(s)
Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Mecanotransducción Celular/fisiología , Cadenas Pesadas de Miosina/fisiología , Animales , Calcio/fisiología , Ratones , Ratones Mutantes , Cadenas Pesadas de Miosina/genética
7.
J Neurosci ; 34(16): 5505-14, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24741041

RESUMEN

Tip links between adjacent stereocilia are believed to gate mechano-electrical transducer (MET) channels and mediate the electrical responses of sensory hair cells. We found that mouse auditory hair cells that lack tip links due to genetic mutations or exposure to the Ca(2+) chelator BAPTA can, however, still respond to mechanical stimuli. These MET currents have unusual properties and are predominantly of the opposite polarity relative to those measured when tip links are present. There are other striking differences, for example, the channels are usually all closed when the hair cell is not stimulated and the currents in response to strong stimuli can be substantially larger than normal. These anomalous MET currents can also be elicited early in development, before the onset of mechano-electrical transduction with normal response polarity. Current-voltage curves of the anomalous MET currents are linear and do not show the rectification characteristic of normal MET currents. The permeant MET channel blocker dihydrostreptomycin is two orders of magnitude less effective in blocking the anomalous MET currents. The findings suggest the presence of a large population of MET channels with pore properties that are distinct from those of normal MET channels. These channels are not gated by hair-bundle links and can be activated under a variety of conditions in which normal tip-link-mediated transduction is not operational.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Células Ciliadas Auditivas/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Animales , Animales Recién Nacidos , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Permeabilidad de la Membrana Celular/genética , Quelantes/farmacología , Sulfato de Dihidroestreptomicina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Embrión de Mamíferos , Femenino , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Masculino , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miosina VIIa , Miosinas/genética , Órgano Espiral/citología , Precursores de Proteínas/genética
8.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653806

RESUMEN

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Asunto(s)
Cóclea , Animales , Ratones , Cobayas , Humanos , Ratas , Porcinos , Células Ciliadas Auditivas , Microscopía Fluorescente , Aprendizaje Automático
9.
Nat Genet ; 30(3): 257-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11850623

RESUMEN

Despite recent progress in identifying genes underlying deafness, there are still relatively few mouse models of specific forms of human deafness. Here we describe the phenotype of the Beethoven (Bth) mouse mutant and a missense mutation in Tmc1 (transmembrane cochlear-expressed gene 1). Progressive hearing loss (DFNA36) and profound congenital deafness (DFNB7/B11) are caused by dominant and recessive mutations of the human ortholog, TMC1 (ref. 1), for which Bth and deafness (dn) are mouse models, respectively.


Asunto(s)
Sordera/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Animales , Genes Dominantes , Genes Recesivos , Células Ciliadas Auditivas/metabolismo , Humanos , Hibridación in Situ , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Mutación Missense , Fenotipo
10.
Front Cell Dev Biol ; 11: 1247324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900280

RESUMEN

The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.

11.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693382

RESUMEN

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

13.
Hum Mol Genet ; 18(23): 4615-28, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19744958

RESUMEN

The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.


Asunto(s)
Sordera/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Sordera/genética , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Endocitosis , Femenino , Células Ciliadas Auditivas Internas/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cadenas Pesadas de Miosina/genética , Sinapsis/química
14.
Front Neurosci ; 15: 695268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381329

RESUMEN

Cisplatin-induced ototoxicity in humans is more predominant in the cochlea than in the vestibule. Neither definite nor substantial vestibular dysfunction after cisplatin treatment has been consistently reported in the current literature. Inner ear hair cells seem to have intrinsic characteristics that make them susceptible to direct exposure to cisplatin. The existing literature suggests, however, that cisplatin might have different patterns of drug trafficking across the blood-labyrinth-barrier, or different degrees of cisplatin uptake to the hair cells in the cochlear and vestibular compartments. This review proposes an explanation for the preferential cochleotoxicity of cisplatin based on current evidence as well as the anatomy and physiology of the inner ear. The endocochlear potential, generated by the stria vascularis, acting as the driving force for hair cell mechanoelectrical transduction might also augment cisplatin entry into cochlear hair cells. Better understanding of the stria vascularis might shed new light on cochleotoxic mechanisms and inform the development of otoprotective interventions to moderate cisplatin associated ototoxicity.

15.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33735112

RESUMEN

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Asunto(s)
Aminoglicósidos/efectos adversos , Cóclea/efectos de los fármacos , Ototoxicidad/prevención & control , Animales , Cóclea/citología , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/efectos de los fármacos , Femenino , Gentamicinas/efectos adversos , Gentamicinas/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Masculino , Mecanotransducción Celular/efectos de los fármacos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Factor de Transcripción Asociado a Microftalmía/genética , Neomicina/efectos adversos , Técnicas de Cultivo de Órganos , Ototoxicidad/etiología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Proc Natl Acad Sci U S A ; 104(49): 19583-8, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18048323

RESUMEN

Homozygote varitint-waddler (Va) mice, expressing a mutant isoform (A419P) of TRPML3 (mucolipin 3), are profoundly deaf and display vestibular and pigmentation deficiencies, sterility, and perinatal lethality. Here we show that the varitint-waddler isoform of TRPML3 carrying an A419P mutation represents a constitutively active cation channel that can also be identified in native varitint-waddler hair cells as a distinct inwardly rectifying current. We hypothesize that the constitutive activation of TRPML3 occurs as a result of a helix-breaking proline substitution in transmembrane-spanning domain 5 (TM5). A proline substitution scan demonstrated that the inner third of TRPML3's TM5 is highly susceptible to proline-based kinks. Proline substitutions in TM5 of other TRP channels revealed that TRPML1, TRPML2, TRPV5, and TRPV6 display a similar susceptibility at comparable positions, whereas other TRP channels were not affected. We conclude that the molecular basis for deafness in the varitint-waddler mouse is the result of hair cell death caused by constitutive TRPML3 activity. To our knowledge, our study provides the first direct mechanistic link of a mutation in a TRP ion channel with mammalian hearing loss.


Asunto(s)
Pérdida Auditiva/genética , Canales Catiónicos TRPM/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Apoptosis , Línea Celular , Ratones , Datos de Secuencia Molecular , Prolina/química , Prolina/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Canales de Potencial de Receptor Transitorio
17.
BMJ Paediatr Open ; 4(1): e000781, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33225082

RESUMEN

Norrie disease (ND) is a rare, X-linked condition of visual and auditory impairment, often presenting with additional neurological features and developmental delays of varying severity. While all affected patients are born blind, or lose their vision in infancy, progressive sensorineural hearing loss develops in the majority of cases and is typically detected in the second decade of life. A range of additional symptoms of ND, such as seizure disorders, typically appear from a young age, but it is difficult to predict the range of symptoms ND patients will experience. After growing up without vision, hearing loss represents the greatest worry for many patients with ND, as they may lose the ability to participate in previously enjoyed activities or to communicate with others. Dual sensory loss has a physical, psychosocial and financial impact on both patients with ND and their families. Routine monitoring of the condition is required in order to identify, treat and provide support for emerging health problems, leading to a large burden of medical appointments. Many patients need to travel long distances to meet with specialists, representing a further burden on time and finances. Additionally, the rare nature of dual sensory impairment in children means that few clinical environments are designed to meet their needs. Dual Sensory clinics are multidisciplinary environments designed for sensory-impaired children and have been suggested to alleviate the impact of diseases involving sensory loss such as ND. Here, we discuss the diagnosis, monitoring and management of ND and the impact it has on paediatric patients and their caregivers. We describe the potential for dual sensory clinics to reduce disease burden through providing an appropriate clinical environment, access to multiple clinical experts in one visit, and ease of monitoring for patients with ND.

18.
J Neurosci ; 28(40): 9939-52, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829952

RESUMEN

The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasma membrane. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labeled with externally applied annexin V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin V labeling reveals that the aminoglycoside antibiotic neomycin induces rapid PS externalization, specifically on the apical surface of hair cells. PS externalization is observed within approximately 75 s of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application, indicating that blebbing is accompanied by membrane addition to the hair cell surface. PS externalization and membrane blebbing can, nonetheless, occur independently. Pretreating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a phosphatidylinositol 4,5-biphosphate (PIP2)-binding pleckstrin homology domain, can reduce neomycin-induced PS externalization, suggesting that neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. After neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear, and surface-bound annexin V is internalized, distributing throughout the supranuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalized annexin V, however, remains below the apical surface, thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the periphery of the hair cell.


Asunto(s)
Aminoglicósidos/metabolismo , Células Ciliadas Auditivas/química , Células Ciliadas Auditivas/fisiología , Fosfatidilserinas/fisiología , Aminoglicósidos/análisis , Aminoglicósidos/genética , Animales , Células Cultivadas , Cóclea/efectos de los fármacos , Cóclea/fisiología , Femenino , Cobayas , Células Ciliadas Auditivas/efectos de los fármacos , Masculino , Ratones , Ratones Mutantes , Neomicina/metabolismo , Neomicina/farmacología , Fosfatidilserinas/agonistas , Fosfatidilserinas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Factores de Tiempo
19.
Pflugers Arch ; 458(2): 273-81, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19048284

RESUMEN

Hair cells in the inner ear provide the basis for the exquisite hearing capabilities of mammals. These cells transduce sound-induced displacements of their mechanosensitive hair bundle into electrical currents within a fraction of a millisecond and with nanometer fidelity. Excitatory displacements of the hair cell's bundle tense tip links that open transducer channels. These channels are located either at one or at both ends of the links, where the latter possibility was thought to compromise sensitivity via negative cooperativity, and discarded for quantitatively describing the transduction process. Here, we show instead that this series mode of activation accurately explains measured transduction in hair cells. It enhances both sensitivity and dynamic range of hair cell transduction, by one channel that is extremely sensitive at small displacements while the other responds best to larger stimuli. Our results provide a new framework for exploring the dynamics of hair cell activation.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Animales , Electrofisiología , Activación del Canal Iónico , Ratones , Modelos Neurológicos , Transducción de Señal/fisiología
20.
Pflugers Arch ; 459(1): 115-30, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19756723

RESUMEN

We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1c (dfcr-2J/dfcr-2J) mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23.


Asunto(s)
Adaptación Fisiológica , Proteínas Portadoras/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Mecanotransducción Celular/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Mutantes , Microscopía Electrónica de Rastreo , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA