Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Infect Dis ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269503

RESUMEN

BACKGROUND: High priority efforts are underway to support the development of novel mucosal COVID-19 vaccines, such as the US Government's Project NextGen and the Center for Epidemic Preparedness Innovations' goal to respond to the next pandemic with a new vaccine in 100 days. However, there is limited consensus about the complementary role of mucosal immunity in disease progression and how to evaluate immunogenicity of mucosal vaccines. This study investigated the role of oral mucosal antibody responses in viral clearance and COVID-19 symptom duration. METHODS: Participants with PCR-confirmed SARS-CoV-2 infection provided oral fluid for testing with SARS-CoV-2 antibody multiplex assays, nasal swabs for RT-PCR and symptom information at up to eight follow-ups from April 2020 to February 2022. RESULTS: High and moderate oral fluid anti-spike (S) secretory IgA (SIgA) post infection was associated with significantly faster viral clearance and symptom resolution across age groups with effect sizes equivalent to having COVID-19 vaccine immunity at the time of infection. Those with high and moderate anti-S SIgA cleared the virus 14 days (95% CI: 10-18) and recovered 9-10 days (95% CI: 6-14) earlier. Delayed and higher anti-S IgG was associated with significantly longer time to clearance and recovery. Experiencing symptoms longer than four weeks was associated with lower anti-RBD SIgA 15-30 days after infection onset (p<0.001). CONCLUSION: Robust mucosal SIgA early post infection appears to support faster clearance of SARS-CoV-2 and recovery from COVID-19 symptoms. This research underscores the importance of harmonizing mucosal immune response assays to evaluate new mucosal vaccines.

2.
Emerg Infect Dis ; 29(9): 1925-1928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579513

RESUMEN

The optimal approach to COVID-19 surveillance in congregate populations remains unclear. Our study at the US Naval Academy in Annapolis, Maryland, USA, assessed the concordance of antibody prevalence in longitudinally collected dried blood spots and saliva in a setting of frequent PCR-based testing. Our findings highlight the utility of salivary-based surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Saliva , Prueba de COVID-19 , Técnicas de Laboratorio Clínico
3.
Paediatr Perinat Epidemiol ; 37(2): 165-178, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36756808

RESUMEN

BACKGROUND: Arsenic exposure and micronutrient deficiencies may alter immune reactivity to influenza vaccination in pregnant women, transplacental transfer of maternal antibodies to the foetus, and maternal and infant acute morbidity. OBJECTIVES: The Pregnancy, Arsenic, and Immune Response (PAIR) Study was designed to assess whether arsenic exposure and micronutrient deficiencies alter maternal and newborn immunity and acute morbidity following maternal seasonal influenza vaccination during pregnancy. POPULATION: The PAIR Study recruited pregnant women across a large rural study area in Gaibandha District, northern Bangladesh, 2018-2019. DESIGN: Prospective, longitudinal pregnancy and birth cohort. METHODS: We conducted home visits to enrol pregnant women in the late first or early second trimester (11-17 weeks of gestational age). Women received a quadrivalent seasonal inactivated influenza vaccine at enrolment. Follow-up included up to 13 visits between enrolment and 3 months postpartum. Arsenic was measured in drinking water and maternal urine. Micronutrient deficiencies were assessed using plasma biomarkers. Vaccine-specific antibody titres were measured in maternal and infant serum. Weekly telephone surveillance ascertained acute morbidity symptoms in women and infants. PRELIMINARY RESULTS: We enrolled 784 pregnant women between October 2018 and March 2019. Of 784 women who enrolled, 736 (93.9%) delivered live births and 551 (70.3%) completed follow-up visits to 3 months postpartum. Arsenic was detected (≥0.02 µg/L) in 99.7% of water specimens collected from participants at enrolment. The medians (interquartile ranges) of water and urinary arsenic at enrolment were 5.1 (0.5, 25.1) µg/L and 33.1 (19.6, 56.5) µg/L, respectively. Water and urinary arsenic were strongly correlated (Spearman's ⍴ = 0.72) among women with water arsenic ≥ median but weakly correlated (⍴ = 0.17) among women with water arsenic < median. CONCLUSIONS: The PAIR Study is well positioned to examine the effects of low-moderate arsenic exposure and micronutrient deficiencies on immune outcomes in women and infants. REGISTRATION: NCT03930017.


Asunto(s)
Arsénico , Gripe Humana , Recién Nacido , Lactante , Embarazo , Femenino , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estudios Prospectivos , Bangladesh/epidemiología , Agua , Micronutrientes , Inmunidad
4.
Environ Res ; 234: 116453, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343752

RESUMEN

INTRODUCTION: Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS: We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS: Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS: Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.


Asunto(s)
Arsénico , Arsenicales , Adulto , Humanos , Femenino , Embarazo , Arsénico/análisis , Metilación , Mujeres Embarazadas , Bangladesh , Estudios Transversales , Exposición a Riesgos Ambientales/análisis
5.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067270

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic that has infected over 36 million and killed over 1 million people. Informed implementation of government public health policies depends on accurate data on SARS-CoV-2 immunity at a population scale. We hypothesized that detection of SARS-CoV-2 salivary antibodies could serve as a noninvasive alternative to serological testing for monitoring of SARS-CoV-2 infection and seropositivity at a population scale. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology that comprised 12 CoV antigens, mostly derived from SARS-CoV-2 nucleocapsid (N) and spike (S). Saliva and sera collected from confirmed coronavirus disease 2019 (COVID-19) cases and from the pre-COVID-19 era were tested for IgG, IgA, and IgM to the antigen panel. Matched saliva and serum IgG responses (n = 28) were significantly correlated. The salivary anti-N IgG response resulted in the highest sensitivity (100%), exhibiting a positive response in 24/24 reverse transcription-PCR (RT-PCR)-confirmed COVID-19 cases sampled at >14 days post-symptom onset (DPSO), whereas the salivary anti-receptor binding domain (RBD) IgG response yielded 100% specificity. Temporal kinetics of IgG in saliva were consistent with those observed in blood and indicated that most individuals seroconvert at around 10 DPSO. Algorithms employing a combination of the IgG responses to N and S antigens result in high diagnostic accuracy (100%) by as early as 10 DPSO. These results support the use of saliva-based antibody testing as a noninvasive and scalable alternative to blood-based antibody testing.


Asunto(s)
Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , SARS-CoV-2/inmunología , Saliva/inmunología , Prueba de Ácido Nucleico para COVID-19/métodos , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
bioRxiv ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39484526

RESUMEN

Dried blood spots (DBS) and oral fluids (OF) are easily attainable biospecimen types that have enabled population scale antibody monitoring for SARS-CoV-2 exposure and vaccination. However, the degree to which the two different biospecimen types can be used interchangeably remains unclear. To begin to address this question, we generated contrived DBS (cDBS) and OF (cOF) from serum panels from SARS-CoV-2 infected, vaccinated, and uninfected individuals. The contrived samples were evaluated using SARS-CoV-2 multiplexed microsphere immunoassays (MIAs) at two different institutions. Intra-laboratory tests revealed near perfect agreement between cDBS and cOF for N and S antigens, as evidenced by κ = 0.97-1 and 98%-100% agreement. Inter-laboratory comparisons were equally robust for both N (κ = 0.94-0.96; 97.5%-98 % agreement) and S (κ = 0.98 -1.0; 99.0%-100%). Furthermore, assays were transferred between labs, including methods and reagents, and a subset of cDBS and cOF samples (n = 52) were tested. Qualitative concordance remained high (κ = 0.94-1.0; 97.5%-100% agreement), confirming that integrity of the assays is retained upon transfer. In summary, our results provide evidence that DBS and OF can be used interchangeably across laboratories and institutions for the qualitative assessment of SARS-CoV-2 antibody determinations.

7.
Ann Work Expo Health ; 68(8): 881-889, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39102901

RESUMEN

The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high-risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. We used a multiplex salivary SARS-CoV-2 IgG assay to determine infection-induced antibody prevalence among 236 adult (≥18 yr) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry. Most participants (55%, 95% confidence interval [CI] 49% to 62%) were infection-induced IgG positive, including 71% (95% CI 60% to 83%) of animal slaughtering and processing industry workers, 1.5 to 4.3 times North Carolina general population infection-induced seroprevalence estimates during overlapping time periods. Considering self-reported diagnostic test positivity and vaccination history in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly to 61% (95% CI 55% to 67%), including 75% (95% CI 64% to 87%) of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio 4.5, 95% CI 1.0 to 21.0). This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal slaughtering and processing workers and workers in large congregate settings.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Lugar de Trabajo , Humanos , North Carolina/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/inmunología , Masculino , Adulto , Femenino , SARS-CoV-2/inmunología , Persona de Mediana Edad , Lugar de Trabajo/estadística & datos numéricos , Estudios Seroepidemiológicos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/análisis , Prevalencia , Industrias/estadística & datos numéricos , Inmunoglobulina G/sangre , Exposición Profesional/estadística & datos numéricos , Factores de Riesgo
8.
medRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496588

RESUMEN

Background: The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. Methods: We used a multiplex salivary SARS-CoV-2 IgG antibody assay to determine infection-induced antibody prevalence among 236 adult (≥18 years) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry and compared infection-induced IgG prevalence by participant industry and with the North Carolina general population. We also combined antibody results with reported SARS-CoV-2 molecular test positivity and vaccination history to identify evidence of prior infection. We used logistic regression to estimate odds ratios of prior infection by potential work-related risk factors, adjusting for industry and date. Results: Most participants (55%) were infection-induced IgG positive, including 71% of animal slaughtering and processing industry workers, which is 1.5 to 4.3 times higher compared to the North Carolina general population, as well as higher than molecularly-confirmed cases and the only other serology study we identified of animal slaughtering and processing workers. Considering questionnaire results in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly, to 61%, including 75% of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio [aOR] 4.5, 95% confidence interval [CI] 1.0 to 21.0). Conclusions: This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal processing and essential workers and workers in large congregate settings. We also demonstrate the utility of combining non-invasive biomarker and questionnaire data for the study of workplace exposures.

9.
mSphere ; 8(1): e0052222, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36656002

RESUMEN

Industrial livestock operations (ILOs), particularly processing facilities, emerged as centers of coronavirus disease 2019 (COVID-19) outbreaks in spring 2020. Confirmed cases of COVID-19 underestimate true prevalence. To investigate the prevalence of antibodies against SARS-CoV-2, we enrolled 279 participants in North Carolina from February 2021 to July 2022: 90 from households with at least one ILO worker (ILO), 97 from high-ILO intensity areas (ILO neighbors [ILON]), and 92 from metropolitan areas (metro). More metro (55.4%) compared to ILO (51.6%) and ILON participants (48.4%) completed the COVID-19 primary vaccination series; the median completion date was more than 4 months later for ILO compared to ILON and metro participants, although neither difference was statistically significant. Participants provided a saliva swab we analyzed for SARS-CoV-2 IgG using a multiplex immunoassay. The prevalence of infection-induced IgG (positive for nucleocapsid and receptor binding domain) was higher among ILO (63%) than ILON (42.9%) and metro (48.7%) participants (prevalence ratio [PR], 1.38; 95% confidence interval [CI], 1.06 to 1.80; reference category ILON and metro combined). The prevalence of infection-induced IgG was also higher among ILO participants than among an Atlanta health care worker cohort (PR, 2.45; 95% CI, 1.80 to 3.33) and a general population cohort in North Carolina (PRs, 6.37 to 10.67). The infection-induced IgG prevalence increased over the study period. Participants reporting not masking in public in the past 2 weeks had higher infection-induced IgG prevalence (78.6%) than participants reporting masking (49.3%) (PR, 1.59; 95% CI, 1.19 to 2.13). Lower education, more people per bedroom, Hispanic/Latino ethnicity, and more contact with people outside the home were also associated with higher infection-induced IgG prevalence. IMPORTANCE Few studies have measured COVID-19 seroprevalence in North Carolina, especially among rural, Black, and Hispanic/Latino communities that have been heavily affected. Antibody results show high rates of COVID-19 among industrial livestock operation workers and their household members. Antibody results add to evidence of health disparities related to COVID-19 by socioeconomic status and ethnicity. Associations between masking and physical distancing with antibody results also add to evidence of the effectiveness of these prevention strategies. Delays in the timing of receipt of COVID-19 vaccination reinforce the importance of dismantling vaccination barriers, especially for industrial livestock operation workers and their household members.


Asunto(s)
COVID-19 , Animales , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Ganado , Prevalencia , North Carolina/epidemiología , Estudios Seroepidemiológicos , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Inmunoglobulina G
10.
J Immunol Methods ; 514: 113440, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773929

RESUMEN

BACKGROUND: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. OBJECTIVES: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. METHODS: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December 2019 (n = 555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n = 398) and used to optimize and validate MIA performance (total n = 953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. RESULTS: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se] = 100.0%; 95% confidence interval [CI] = 94.8%, 100.0%) and 108/109 negatives (specificity [Sp] = 99.1%; 95% CI = 97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se = 98.8%; 95% CI = 93.3%, 100.0%] and 127/127 negatives (Sp = 100%; 95% CI = 97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n = 30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.83, S: ρ = 0.82; all p < 0.001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ = 0.68, RBD: ρ = 0.78, S: ρ = 0.79; all p < 0.001) and with plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.79, S: ρ = 0.76; p < 0.001) were similar. CONCLUSIONS: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (> 98.8%) and Sp (> 99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Anticuerpos Neutralizantes , SARS-CoV-2 , COVID-19/diagnóstico , Anticuerpos Antivirales , Inmunoglobulina G , Prueba de COVID-19
11.
Microbiol Spectr ; 11(4): e0276522, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37289070

RESUMEN

The objective of the study was to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in the Howard County, Maryland, general population and demographic subpopulations attributable to natural infection or coronavirus disease 2019 (COVID-19) vaccination and to identify self-reported social behaviors that may affect the likelihood of recent or past SARS-CoV-2 infection. A cross-sectional, saliva-based serological study of 2,880 residents of Howard County, Maryland, was carried out from July through September 2021. Natural SARS-CoV-2 infection prevalence was estimated by inferring infections among individuals according to anti-nucleocapsid immunoglobin G levels and calculating averages weighted by sample proportions of various demographics. Antibody levels between BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) recipients were compared. Antibody decay rate was calculated by fitting exponential decay curves to cross-sectional indirect immunoassay data. Regression analysis was carried out to identify demographic factors, social behaviors, and attitudes that may be linked to an increased likelihood of natural infection. The estimated overall prevalence of natural infection in Howard County, Maryland, was 11.9% (95% confidence interval, 9.2% to 15.1%), compared with 7% reported COVID-19 cases. Antibody prevalence indicating natural infection was highest among Hispanic and non-Hispanic Black participants and lowest among non-Hispanic White and non-Hispanic Asian participants. Participants from census tracts with lower average household income also had higher natural infection rates. After accounting for multiple comparisons and correlations between participants, none of the behavior or attitude factors had significant effects on natural infection. At the same time, recipients of the mRNA-1273 vaccine had higher antibody levels than those of BNT162b2 vaccine recipients. Older study participants had overall lower antibody levels compared with younger study participants. The true prevalence of SARS-CoV-2 infection is higher than the number of reported COVID-19 cases in Howard County, Maryland. A disproportionate impact of infection-induced SARS-CoV-2 positivity was observed across different ethnic/racial subpopulations and incomes, and differences in antibody levels across different demographics were identified. Taken together, this information may inform public health policy to protect vulnerable populations. IMPORTANCE We employed a highly innovative noninvasive multiplex oral fluid SARS-CoV-2 IgG assay to ascertain our seroprevalence estimates. This laboratory-developed test has been applied in NCI's SeroNet consortium, possesses high sensitivity and specificity according to FDA Emergency Use Authorization guidelines, correlates strongly with SARS-CoV-2 neutralizing antibody responses, and is Clinical Laboratory Improvement Amendments-approved by the Johns Hopkins Hospital Department of Pathology. It represents a broadly scalable public health tool to improve understanding of recent and past SARS-CoV-2 exposure and infection without drawing any blood. To our knowledge, this is the first application of a high-performance salivary SARS-CoV-2 IgG assay to estimate population-level seroprevalence, including identifying COVID-19 disparities. We also are the first to report differences in SARS-CoV-2 IgG responses by COVID-19 vaccine manufacturers (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]). Our findings demonstrate remarkable consistency with those of blood-based SARS-CoV-2 IgG assays in terms of differences in the magnitude of SARS-CoV-2 IgG responses between COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Maryland/epidemiología , Estudios Transversales , Prevalencia , Saliva , Estudios Seroepidemiológicos , COVID-19/diagnóstico , COVID-19/epidemiología , Anticuerpos Antivirales , Inmunoglobulina G
12.
Res Sq ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014049

RESUMEN

Critically ill people with COVID-19 have greater antibody titers than those with mild to moderate illness, but their association with recovery or death from COVID-19 has not been characterized. In 178 COVID-19 patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses against SARS-CoV-2. The association of demographic variables and >20 serological antibody measures with intubation or death due to COVID-19 was determined using machine learning algorithms. Predictive models revealed that IgG binding and ACE2 binding inhibition responses at 1 MPE were positively and C1q complement activity at enrollment was negatively associated with an increased probability of intubation or death from COVID-19 within 3 MPE. Serological antibody measures were more predictive than demographic variables of intubation or death among COVID-19 patients.

13.
J Am Geriatr Soc ; 70(3): 659-668, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038344

RESUMEN

BACKGROUND: SARS-CoV-2 circulating variants coupled with waning immunity pose a significant threat to the long-term care (LTC) population. Our objective was to measure salivary IgG antibodies in residents and staff of an LTC facility to (1) evaluate IgG response in saliva post-natural infection and vaccination and (2) assess its feasibility to describe the seroprevalence over time. METHODS: We performed salivary IgG sampling of all residents and staff who agreed to test in a 150-bed skilled nursing facility during three seroprevalence surveys between October 2020 and February 2021. The facility had SARS-CoV-2 outbreaks in May 2020 and November 2020, when 45 of 138 and 37 of 125 residents were infected, respectively; they offered two Federal vaccine clinics in January 2021. We evaluated quantitative IgG in saliva to the Nucleocapsid (N), Spike (S), and Receptor-binding domain (RBD) Antigens of SARS-CoV-2 over time post-infection and post-vaccination. RESULTS: One hundred twenty-four residents and 28 staff underwent saliva serologic testing on one or more survey visits. Over three surveys, the SARS-CoV-2 seroprevalence at the facility was 49%, 64%, and 81%, respectively. IgG to S, RBD, and N Antigens all increased post infection. Post vaccination, the infection naïve group did not have a detectable N IgG level, and N IgG levels for the previously infected did not increase post vaccination (p < 0.001). Fully vaccinated subjects with prior COVID-19 infection had significantly higher RBD and S IgG responses compared with those who were infection-naïve prior to vaccination (p < 0.001 for both). CONCLUSIONS: Positive SARS-COV-2 IgG in saliva was concordant with prior infection (Anti N, S, RBD) and vaccination (Anti S, RBD) and remained above positivity threshold for up to 9 months from infection. Salivary sampling is a non-invasive method of tracking immunity and differentiating between prior infection and vaccination to inform the need for boosters in LTC residents and staff.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunoglobulina G/inmunología , Saliva/inmunología , Anciano , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Masculino , Casas de Salud , SARS-CoV-2 , Estudios Seroepidemiológicos , Estados Unidos/epidemiología
14.
Biosens Bioelectron ; 195: 113656, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600203

RESUMEN

Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Antivirales , Prueba Serológica para COVID-19 , Prueba de COVID-19 , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , SARS-CoV-2 , Sensibilidad y Especificidad
15.
medRxiv ; 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36597525

RESUMEN

Background: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. Objectives: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. Methods: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. Results: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p <0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p <0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p <0.0001) were similar. Conclusions: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.

16.
medRxiv ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35262095

RESUMEN

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

17.
mSphere ; 7(4): e0019322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35703544

RESUMEN

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , SARS-CoV-2 , Pruebas Serológicas/métodos
18.
J Clin Virol ; 145: 104997, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695724

RESUMEN

Oral fluid (hereafter saliva) offers a non-invasive sampling method for detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a laboratory-developed multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serologic enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, and Cohen's kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated variable, but comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in monitoring population-based seroprevalence and vaccine antibody response.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Prueba Serológica para COVID-19/métodos , COVID-19/inmunología , Humanos , Inmunización Pasiva , Inmunoglobulina G/aislamiento & purificación , SARS-CoV-2 , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
19.
medRxiv ; 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33532806

RESUMEN

Oral fluid (hereafter saliva) offers a non-invasive sampling method for the detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serology enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, overall percent agreement (PA), and Cohen kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in screening CCP donors and monitoring population-based seroprevalence and vaccine antibody response.

20.
Open Forum Infect Dis ; 8(6): ofab195, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34095338

RESUMEN

BACKGROUND: Sustained molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the upper respiratory tract (URT) in mild to moderate coronavirus disease 2019 (COVID-19) is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five symptomatic outpatients self-collected midturbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR), in 507 URT samples occurred a median (interquartile range) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR-positive samples tested. All participants but 1 with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (adjusted hazard ratio [aHR], 0.96; 95% CI, 0.92-0.99; P = .020) and body mass index (BMI) ≥25 kg/m2 (aHR, 0.37; 95% CI, 0.18-0.78; P = .009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as 1 of first 3 COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR, 2.06; 95% CI, 1.02-4.18; P = .044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA