Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Phys Rev Lett ; 132(22): 225001, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877942

RESUMEN

We report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously. Moreover, we observed an energy-angle correlation of the streaked betatron x rays and utilized it in diagnosing the electron acceleration process in a single-shot mode. Our work could also find applications in advanced control of laser beam and particle propagation. More importantly, the angular streaked betatron x ray has an intrinsic spatiotemporal correlation, which makes it a promising tool for single-shot pump-probe applications.

2.
Phys Rev Lett ; 130(10): 105002, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962018

RESUMEN

The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.

3.
Opt Express ; 30(15): 26315-26323, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236826

RESUMEN

Structured intense laser beams offer degrees of freedom that are highly attractive for high-field science applications. However, the performance of high-power laser beams in these applications is often hindered by deviations from the desired spatiotemporal profile. This study reports the wavefront optimization of ultrafast Laguerre-Gaussian beams through the synergy of adaptive optics and genetic algorithm-guided feedback. The results indicate that the intensity fluctuations along the perimeter of the target ring-shaped profile can be reduced up to ∼15%. Furthermore, the radius of the ring beam profile can be tailored to a certain extent by establishing threshold fitting criteria. The versatility of this approach is experimentally demonstrated in conjunction with different focusing geometries.

4.
Phys Rev Lett ; 124(11): 114801, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242688

RESUMEN

We report on the experimental observation of a decreased self-injection threshold by using laser pulses with circular polarization in laser wakefield acceleration experiments in a nonpreformed plasma, compared to the usually employed linear polarization. A significantly higher electron beam charge was also observed for circular polarization compared to linear polarization over a wide range of parameters. Theoretical analysis and quasi-3D particle-in-cell simulations reveal that the self-injection and hence the laser wakefield acceleration is polarization dependent and indicate a different injection mechanism for circularly polarized laser pulses, originating from larger momentum gain by electrons during above threshold ionization. This enables electrons to meet the trapping condition more easily, and the resulting higher plasma temperature was confirmed via spectroscopy of the XUV plasma emission.

5.
Phys Rev Lett ; 125(14): 145001, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064539

RESUMEN

In experiments performed with the OMEGA EP laser system, magnetic field generation in double ablation fronts was observed. Proton radiography measured the strength, spatial profile, and temporal dynamics of self-generated magnetic fields as the target material was varied between plastic, aluminum, copper, and gold. Two distinct regions of magnetic field are generated in mid-Z targets-one produced by gradients from electron thermal transport and the second from radiation-driven gradients. Extended magnetohydrodynamic simulations including radiation transport reproduced key aspects of the experiment, including field generation and double ablation front formation.

6.
Opt Express ; 27(8): 10912-10923, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052944

RESUMEN

There has been growing interest both in studying high intensity ultrafast laser plasma interactions with adaptive control systems as well as using long wavelength driver beams. We demonstrate the coherent control of the dynamics of laser-wakefield acceleration driven by ultrashort (∼ 100 fs) mid-infrared (∼ 3.9 µm) laser pulses. The critical density at this wavelength is 7.3 × 1019 cm-3, which is achievable with an ordinary gas target system. Interactions between mid-infrared laser pulses and such near-critical-density plasma may be beneficial due to much higher absorption of laser energy. In addition, the normalized vector potential of the laser field a0 increases with longer laser wavelength, lowering the required peak laser intensity to drive non-linear laser-wakefield acceleration. Here, MeV level, collimated electron beams with non-thermal, peaked energy spectra are generated. Optimization of electron beam qualities are realized through adaptive control of the laser wavefront. A genetic algorithm controlling a deformable mirror improves the electron total charge, energy spectra, beam pointing and stability at various plasma density profiles. Particle-in-cell simulations reveal that the optimal wavefront causes an earlier injection on the density up-ramp and thus higher energy gain as well as less filamentation during the interaction, which leads to the improvement in electron beam collimation and energy spectra.

7.
Opt Express ; 26(13): 16456-16465, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119476

RESUMEN

Studies of high-power ultrashort laser pulse interaction with matter are not only of fundamental scientific interest, but are also highly relevant to applications in the domain of remote sensing. Here, we investigate the effect of laser wavelength on coupling of femtosecond laser filaments to solid targets. Three central wavelengths have been used to produce filaments: 0.4, 0.8, and 2.0 µm. We find that, unlike the case of conventional tight focusing, use of shorter wavelengths does not necessarily produce more efficient ablation. This is explained by increased multi-photon absorption arising in near-UV filamentation. Investigations of filament-induced plasma dynamics and its thermodynamic parameters provide the foundation for unveiling the interplay between wavelength-dependent filament ablation mechanisms. In this way, strategies to increase the sensitivity of material detection via this technique may be better understood, thereby improving the analytical performance in this class of applications.

8.
Opt Express ; 25(15): 17271-17279, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789220

RESUMEN

We apply active feedback optimization methods to pyroelectric measurements of a THz signal generated by four wave mixing in air using 1 mJ to 12 mJ, 35 fs laser pulses operating at 12 kHz repetition rate. A genetic algorithm, using the THz signal as a figure of merit, determines the voltage settings to a deformable mirror and results in up to a 6 fold improvement in the THz signal compared with settings optimized for the best focus. It is possible to optimize for different THz generation processes using this technique.

9.
Phys Rev Lett ; 119(18): 185002, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219555

RESUMEN

We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

10.
Phys Rev Lett ; 117(9): 094801, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610860

RESUMEN

Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

12.
Phys Rev Lett ; 113(26): 263904, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615338

RESUMEN

As lasers become progressively higher in power, optical damage thresholds will become a limiting factor. Using the nonlinear optics of plasma may be a way to circumvent these limits. Here, we present a new self-compression mechanism for high-power, femtosecond laser pulses based on geometrical focusing and three dimensional spatiotemporal reshaping in an ionizing plasma. By propagating tightly focused, 10-mJ femtosecond laser pulses through a 100-µm gas jet, the interplay between ionization gradients, focusing, and diffraction of the light pulse leads to stable and uniform self-compression of the pulse, while maintaining a high-energy throughput and excellent refocusability. Self-compression down to 16 fs from an original 36-fs pulse is measured using second-harmonic-generation frequency-resolved optical gating. Using this mechanism, we are able to maintain a high transmission (>88%) such that the pulse peak power is doubled. Three-dimensional numerical simulations are performed to support our interpretation of the experimental observations.

13.
Phys Rev Lett ; 113(22): 224801, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25494074

RESUMEN

We report on the generation of a narrow divergence (θ_{γ}<2.5 mrad), multi-MeV (E_{max}≈18 MeV) and ultrahigh peak brilliance (>1.8×10^{20} photons s^{-1} mm^{-2} mrad^{-2} 0.1% BW) γ-ray beam from the scattering of an ultrarelativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a_{0}≈2). The spectrum of the generated γ-ray beam is measured, with MeV resolution, seamlessly from 6 to 18 MeV, giving clear evidence of the onset of nonlinear relativistic Thomson scattering. To the best of our knowledge, this photon source has the highest peak brilliance in the multi-MeV regime ever reported in the literature.

14.
Phys Rev Lett ; 110(17): 175002, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679739

RESUMEN

Coherent x-ray beams with a subfemtosecond (<10(-15) s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100 fs) infrared lasers focused to intensities surpassing 10(18) W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21) W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

15.
Phys Rev Lett ; 110(1): 015003, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383801

RESUMEN

Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-µm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.


Asunto(s)
Electrones , Rayos Láser , Magnetismo , Modelos Teóricos , Tecnología Radiológica/métodos , Aceleradores de Partículas , Análisis Espectral/métodos
16.
Phys Rev Lett ; 110(25): 255002, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23829742

RESUMEN

The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30 fs), small divergence (θ(e+) ≃ 3 mrad), and high density (n(e+) ≃ 10(14)-10(15) cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

17.
Opt Lett ; 37(8): 1385-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22513694

RESUMEN

The multiphoton intrapulse interference phase scan (MIIPS) technique is modified to optimize the compressor settings of a chirped pulse amplification (CPA) laser system. Here, we use the compressor itself to perform the phase scan inherent in MIIPS measurement . A frequency-resolved optical gating measurement shows that the pulse duration of the compressor optimized using the modified MIIPS technique is 33.8 fs with a 2.24 rad temporal phase variation above 2% intensity. The measured time-bandwidth product is 0.60, which is close to that of transform-limited Gaussian pulse (0.44).

18.
Phys Rev Lett ; 108(17): 175005, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22680876

RESUMEN

Short pulse laser interactions at intensities of 2×10(21) W cm(-2) with ultrahigh contrast (10(-15)) on submicrometer silicon nitride foils were studied experimentally by using linear and circular polarizations at normal incidence. It was observed that, as the target decreases in thickness, electron heating by the laser begins to occur for circular polarization leading to target normal sheath acceleration of contaminant ions, while at thicker targets no acceleration or electron heating is observed. For linear polarization, all targets showed exponential energy spreads with similar electron temperatures. Particle-in-cell simulations demonstrate that the heating is due to the rapid deformation of the target that occurs early in the interaction. These experiments demonstrate that finite spot size effects can severely restrict the regime suitable for radiation pressure acceleration.

19.
Phys Rev E ; 106(1-2): 015205, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974572

RESUMEN

A paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused intensity on target in situ. In this work, a way of measuring the focused intensity on target is proposed based upon the ionization of xenon gas at low ambient pressure. The field ionization rates from two works [Phys. Rev. A 59, 569 (1999)1050-294710.1103/PhysRevA.59.569 and Phys. Rev. A 98, 043407 (2018)2469-992610.1103/PhysRevA.98.043407], where the latter rate has been derived using quantum mechanics, have been implemented in the particle-in-cell code SMILEI [Comput. Phys. Commun. 222, 351 (2018)0010-465510.1016/j.cpc.2017.09.024]. A series of one- and two-dimensional simulations are compared and shown to reproduce the charge states without presenting visible differences when increasing the simulation dimensionality. They provide a way to accurately verify the intensity on target using in situ measurements.

20.
Phys Rev Lett ; 107(6): 065003, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902332

RESUMEN

By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA