Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant Physiol ; 194(3): 1722-1744, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38051979

RESUMEN

Knocking out genes encoding proteins that downregulate the accumulation of pigments may lead to increases in crop quality and yield. PSEUDO-ETIOLATION IN LIGHT 1 (PEL1) downregulates the accumulation of carotenoids in carrot and chlorophyll in Arabidopsis and rice and may inhibit GOLDEN 2-LIKE (GLK) transcription factors. PEL1 belongs to a previously unstudied gene family found only in plants. We used CRISPR/Cas9 technology to knock out each member of the 4-member PEL gene family and both GLK genes in Arabidopsis. In pel mutants, chlorophyll levels were elevated in seedlings; after flowering, chloroplasts increased in size, and anthocyanin levels increased. Although the chlorophyll-deficient phenotype of glk1 glk2 was epistatic to pel1 pel2 pel3 pel4 in most of our experiments, glk1 glk2 was not epistatic to pel1 pel2 pel3 pel4 for the accumulation of anthocyanins in most of our experiments. The pel alleles attenuated growth, altered the accumulation of nutrients in seeds, disrupted an abscisic acid-inducible inhibition of seedling growth response that promotes drought tolerance, and affected the expression of genes associated with diverse biological functions, such as stress responses, cell wall metabolism hormone responses, signaling, growth, and the accumulation of phenylpropanoids and pigments. We found that PEL proteins specifically bind 6 transcription factors that influence the accumulation of anthocyanins, GLK2, and the carboxy termini of GLK1 and Arabidopsis thaliana myeloblastosis oncogene homolog 4 (AtMYB4). Our data indicate that the PEL proteins influence the accumulation of chlorophyll and many other processes, possibly by inhibiting GLK transcription factors and via other mechanisms, and that multiple mechanisms downregulate chlorophyll content.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Antocianinas , Arabidopsis/genética , Etiolado , Clorofila , Proteínas de Arabidopsis/genética
2.
Plant Physiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748600

RESUMEN

Increasing the amount of cellular space allocated to plastids will lead to increases in the quality and yield of crop plants. However, mechanisms that allocate cellular space to plastids remain poorly understood. To test whether the tomato (Solanum lycopersicum L.) REDUCED CHLOROPLAST COVERAGE (SlREC) gene products serve as central components of the mechanism that allocates cellular space to plastids and contribute to the quality of tomato fruit, we knocked out the four-member SlREC gene family. We found that slrec mutants accumulated lower levels of chlorophyll in leaves and fruit, accumulated lower levels of carotenoids in flowers and fruits, allocated less cellular space to plastids in leaf mesophyll and fruit pericarp cells, and developed abnormal plastids in flowers and fruits. Fruit produced by slrec mutants initiated ripening later than wild type and produced abnormal levels of ethylene and ABA. Metabolome and transcriptome analyses of slrec mutant fruit indicated that the SlREC gene products markedly influence plastid-related gene expression, primary and specialized metabolism, and the response to biotic stress. Our findings and previous work with distinct species indicate that REC proteins help allocate cellular space to plastids in diverse species and cell types and, thus, play a central role in allocating cellular space to plastids. Moreover, the SlREC proteins are required for the high-level accumulation of chlorophyll and carotenoids in diverse organs, including fruit, promote the development of plastids, and influence fruit ripening by acting both upstream and downstream of ABA biosynthesis in a complex network.

3.
Plant Cell ; 34(11): 4329-4347, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35916734

RESUMEN

The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana. A 1-bp deletion in Lssaw1 contributes to the development of leafy heads. Laser-capture microdissection and RNA-sequencing showed that LsSAW1 regulates leaf dorsiventrality and loss-of-function of Lssaw1 downregulates the expression of many adaxial genes but upregulates abaxial genes. LsSAW1 binds to the promoter region of the adaxial gene ASYMMETRIC LEAVES 1 (LsAS1) to upregulate its expression. Overexpression of LsAS1 compromised the effects of Lssaw1 on heading. LsSAW1 also binds to the promoter region of the abaxial gene YABBY 1 (LsYAB1), but downregulates its expression. Overexpression of LsYAB1 led to bending leaves in LsSAW1 genotypes. LsSAW1 directly interacts with KNOTTED 1 (LsKN1), which is necessary for leafy heads in lettuce. RNA-seq data showed that LsSAW1 and LsKN1 exert antagonistic effects on the expression of thousands of genes. LsSAW1 compromises the ability of LsKN1 to repress LsAS1. Our results suggest that downregulation or loss-of-function of adaxial genes and upregulation of abaxial genes allow for the development of leafy heads.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lactuca/genética , Lactuca/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
4.
Plant J ; 113(5): 969-985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587293

RESUMEN

Folate (vitamin B9) is important for plant root development, but the mechanism is largely unknown. Here we characterized a root defective mutant, folb2, in Arabidopsis, which has severe developmental defects in the primary root. The root apical meristem of the folb2 mutant is impaired, and adventitious roots are frequently found at the root-hypocotyl junction. Positional cloning revealed that a 61-bp deletion is present in the predicted junction region of the promoter and the 5' untranslated region of AtFolB2, a gene encoding a dihydroneopterin aldolase that functions in folate biosynthesis. This mutation leads to a significant reduction in the transcript level of AtFolB2. Liquid chromatography-mass spectrometry analysis showed that the contents of the selected folate compounds were decreased in folb2. Arabidopsis AtFolB2 knockdown lines phenocopy the folb2 mutant. On the other hand, the application of exogenous 5-formyltetrahydrofolic acid could rescue the root phenotype of folb2, indicating that the root phenotype is indeed related to the folate level. Further analysis revealed that folate could promote rootward auxin transport through auxin transporters and that folate may affect particular auxin/indole-3-acetic acid proteins and auxin response factors. Our findings provide new insights into the important role of folic acid in shaping root structure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Meristema/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
5.
New Phytol ; 242(6): 2857-2871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584520

RESUMEN

The loss of spines is one of the most important domestication traits for lettuce (Lactuca sativa). However, the genetics and regulation of spine development in lettuce remain unclear. We examined the genetics of spines in lettuce using a segregating population derived from a cross between cultivated and wild lettuce (Lactuca serriola). A gene encoding WUSCHEL-related homeobox transcription factor, named as WOX-SPINE1 (WS1), was identified as the candidate gene controlling the spine development in lettuce, and its function on spines was verified. A CACTA transposon was found to be inserted into the first exon of the ws1 allele, knocking out its function and leading to the lack of spines in cultivated lettuce. All lettuce cultivars investigated have the nonfunctional ws1 gene, and a selection sweep was found at the WS1 locus, suggesting its important role in lettuce domestication. The expression levels of WS1 were associated with the density of spines among different accessions of wild lettuce. At least two independent loss-of-function mutations in the ws1 gene caused the loss of spines in wild lettuce. These findings provide new insights into the development of spines and facilitate the exploitation of wild genetic resources in future lettuce breeding programs.


Asunto(s)
Elementos Transponibles de ADN , Domesticación , Regulación de la Expresión Génica de las Plantas , Lactuca , Proteínas de Plantas , Lactuca/genética , Lactuca/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Alelos , Fenotipo , Mutación/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
6.
Plant J ; 109(1): 182-195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724596

RESUMEN

Lettuce (Lactuca sativa) is one of the most important vegetable crops in the world. As a leafy vegetable, the polymorphism of lettuce leaves from dark to pale green is an important trait. However, the genetic and molecular mechanisms underlying such variations remain poorly understood. In this study, one major locus controlling the polymorphism of dark- and pale-green leaves in lettuce was identified using genome-wide association studies (GWAS). This locus was then fine mapped to an interval of 5375 bp on chromosome 4 using a segregating population containing 2480 progeny. Only one gene, homologous to the GLK genes in Arabidopsis and other plants, is present in the candidate region. A complementation test confirmed that the candidate gene, LsGLK, contributes to the variation of dark- and pale-green leaves. Sequence analysis showed that a CACTA transposon of 7434 bp was inserted 10 bp downstream of the stop codon of LsGLK, followed by a duplication of a 1826-bp fragment covering exons 3-6 of the LsGLK gene. The transposon insertion did not change the expression level of the LsGLK gene. However, because of alternative splicing, only 6% of the transcripts produced from the transposon insertion were wild-type transcripts, which led to the production of pale-green leaves. An evolutionary analysis revealed that the insertion of the CACTA transposon occurred in cultivated lettuce and might have been selected in particular cultivars to satisfy the diverse demands of consumers. In this study, we demonstrated that a transposon insertion near a gene may affect its splicing and consequently generate phenotypic variations.


Asunto(s)
Empalme Alternativo , Lactuca/genética , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Productos Agrícolas , Elementos Transponibles de ADN/genética , Sitios Genéticos/genética , Lactuca/crecimiento & desarrollo , Mutagénesis Insercional , Fenotipo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética
7.
Theor Appl Genet ; 136(12): 241, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930450

RESUMEN

KEY MESSAGE: The mutated LsTT2 and Ls2OGD genes are responsible for white seeds and yellow seeds in lettuce, respectively. Three LsCHS genes are involved in the biosynthesis of flavonoid in seed coats. Lettuce seeds have several different colors, including black, yellow, and white. The genetic mechanisms underlying color variations of lettuce seeds remain unknown. We used genome-wide association studies (GWAS) and map-based cloning approaches to clone genes controlling the color of lettuce seeds. LsTT2, which encodes an R2R3-MYB transcription factor and is homologous to the TT2 gene in Arabidopsis, was shown to be the causal gene for the variation of black and white seeds in lettuce. A point mutation leads to the lack of stop codon in the LsTT2 transcript, resulting in white seeds. Knockout of the LsTT2 gene converted black seeds to white seeds. The locus controlling yellow seeds was mapped to Chromosome 2. Knockout of two 2-oxoglutarate-dependent dioxygenases (2OGD) genes from the candidate region converted black seeds to yellow seeds, suggesting that these two 2OGD proteins catalyze the conversion of yellow metabolites to black metabolites. We also showed that three LsCHS genes from the candidate region are associated with flavonoid biosynthesis in seeds. Knockout mutants of the three LsCHS genes decreased color intensity. This study provides new insights into the regulation of flavonoid biosynthesis in plants.


Asunto(s)
Arabidopsis , Lactuca , Lactuca/genética , Estudio de Asociación del Genoma Completo , Semillas/genética , Flavonoides
8.
Proc Natl Acad Sci U S A ; 117(52): 33668-33678, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33288708

RESUMEN

Leafy head is a unique type of plant architecture found in some vegetable crops, with leaves bending inward to form a compact head. The genetic and molecular mechanisms underlying leafy head in vegetables remain poorly understood. We genetically fine-mapped and cloned a major quantitative trait locus controlling heading in lettuce. The candidate gene (LsKN1) is a homolog of knotted 1 (KN1) from Zea mays Complementation and CRISPR/Cas9 knockout experiments confirmed the role of LsKN1 in heading. In heading lettuce, there is a CACTA-like transposon inserted into the first exon of LsKN1 (LsKN1▽). The transposon sequences act as a promoter rather than an enhancer and drive high expression of LsKN1▽. The enhanced expression of LsKN1▽ is necessary but not sufficient for heading in lettuce. Data from ChIP-sequencing, electrophoretic mobility shift assays, and dual luciferase assays indicate that the LsKN1▽ protein binds the promoter of LsAS1 and down-regulates its expression to alter leaf dorsoventrality. This study provides insight into plant leaf development and will be useful for studies on heading in other vegetable crops.


Asunto(s)
Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Lactuca/genética , Mutagénesis Insercional/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Regulación hacia Arriba/genética , Secuencia de Bases , Duplicación de Gen , Genes de Plantas , Lactuca/anatomía & histología , Filogenia , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/química , Regiones Promotoras Genéticas/genética , Unión Proteica , Sitios de Carácter Cuantitativo/genética , Homología de Secuencia de Ácido Nucleico , Transcripción Genética
9.
Plant Biotechnol J ; 20(9): 1756-1769, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35634731

RESUMEN

Leaf shape represents a vital agronomic trait for leafy vegetables such as lettuce. Some lettuce cultivars produce lobed leaves, varying from pinnately to palmately lobed, but the genetic mechanisms remain unclear. In this study, we cloned one major quantitative trait locus (QTL) controlling palmately lobed leaves. The candidate gene, LsKN1, encodes a homeobox transcription factor, and has been shown previously to be critical for the development of leafy heads in lettuce. The LsKN1 allele that is upregulated by the insertion of a transposon promotes the development of palmately lobed leaves. We demonstrated that LsKN1 upregulated LsCUC2 and LsCUC3 through different mechanisms, and their upregulation was critical for the development of palmately lobed leaves. LsKN1 binds the promoter of LsPID to promote auxin biosynthesis, which positively contributes to the development of palmately lobed leaves. In contrast, LsKN1 suppresses GA biosynthesis to promote palmately lobed leaves. LsKN1 also binds to the promoter of LsAS1, a dorsiventrality gene, to downregulate its expression. Overexpression of the LsAS1 gene compromised the effects of the LsKN1 gene changing palmately to pinnately lobed leaves. Our study illustrated that the upregulated LsKN1 gene led to palmately lobed leaves in lettuce by integrating several downstream pathways, including auxin, gibberellin, and leaf dorsiventrality pathways.


Asunto(s)
Ácidos Indolacéticos , Lactuca , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Lactuca/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo
10.
Plant Biotechnol J ; 20(10): 1956-1967, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748307

RESUMEN

Lettuce (Lactuca sativa) is one of the most important vegetables worldwide and an ideal plant for producing protein drugs. Both well-functioning chloroplasts that perform robust photosynthesis and small leaf angles that enable dense planting are essential for high yields. In this study, we used an F2 population derived from a cross between a lettuce cultivar with pale-green leaves and large leaf angles to a cultivar with dark-green leaves and small leaf angles to clone LsNRL4, which encodes an NPH3/RPT2-Like (NRL) protein. Unlike other NRL proteins in lettuce, the LsNRL4 lacks the BTB domain. Knockout mutants engineered using CRISPR/Cas9 and transgenic lines overexpressing LsNRL4 verified that LsNRL4 contributes to chloroplast development, photosynthesis and leaf angle. The LsNRL4 gene was not present in the parent with pale-green leaves and enlarged leaf angles. Loss of LsNRL4 results in the enlargement of chloroplasts, decreases in the amount of cellular space allocated to chloroplasts and defects in secondary cell wall biosynthesis in lamina joints. Overexpressing LsNRL4 significantly improved photosynthesis and decreased leaf angles. Indeed, the plant architecture of the overexpressing lines is ideal for dense planting. In summary, we identified a novel NRL gene that enhances photosynthesis and influences plant architecture. Our study provides new approaches for the breeding of lettuce that can be grown in dense planting in the open field or in modern plant factories. LsNRL4 homologues may also be used in other crops to increase photosynthesis and improve plant architecture.


Asunto(s)
Lactuca , Fitomejoramiento , Cloroplastos/genética , Cloroplastos/metabolismo , Lactuca/genética , Lactuca/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo
11.
Plant Physiol ; 187(4): 2674-2690, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34636879

RESUMEN

The most common response of a host to pathogens is arguably the asymptomatic response. However, the genetic and molecular mechanisms responsible for asymptomatic responses to pathogens are poorly understood. Here we report on the genetic cloning of two genes controlling the asymptomatic response to tobacco mosaic virus (TMV) in cultivated tobacco (Nicotiana tabacum). These two genes are homologous to tobamovirus multiplication 2A (TOM2A) from Arabidopsis, which was shown to be critical for the accumulation of TMV. Expression analysis indicates that the TOM2A genes might play fundamental roles in plant development or in responses to stresses. Consistent with this hypothesis, a null allele of the TOM2A ortholog in tomato (Solanum lycopersicum) led to the development of bent branches and a high tolerance to both TMV and tomato mosaic virus (ToMV). However, the TOM2A ortholog in Nicotiana glauca did not account for the asymptomatic response to TMV in N. glauca. We showed that TOM2A family is plant-specific and originated from Chlorophyte, and the biological functions of TOM2A orthologs to promote TMV accumulation are highly conserved in the plant kingdom-in both TMV host and nonhost species. In addition, we showed that the interaction between tobacco TOM1 and TOM2A orthologs in plant species is conserved, suggesting a conserved nature of TOM1-TOM2A module in promoting TMV multiplication in plants. The tradeoff between host development, the resistance of hosts to pathogens, and their influence on gene evolution are discussed. Our results shed light on mechanisms that contribute to asymptomatic responses to viruses in plants and provide approaches for developing TMV/ToMV-resistant crops.


Asunto(s)
Nicotiana/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Virus del Mosaico del Tabaco/fisiología , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Nicotiana/microbiología , Replicación Viral
12.
J Exp Bot ; 73(19): 6615-6629, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35816166

RESUMEN

Lettuce (Lactuca sativa) is one of the most popular vegetables worldwide, and diverse leaf shapes, including wavy leaves, are important commercial traits. In this study, we examined the genetics of wavy leaves using an F2 segregating population, and identified a major QTL controlling wavy leaves. The candidate region contained LsKN1, which has previously been shown to be indispensable for leafy heads in lettuce. Complementation tests and knockout experiments verified the function of LsKN1 in producing wavy leaves. The LsKN1∇ allele, which has the insertion of a transposon and has previously been shown to control leafy heads, promoted wavy leaves in our population. Transposition of the CACTA transposon from LsKN1 compromised its function for wavy leaves. High expression of LsKN1 up-regulated several key genes associated with cytokinin (CK) to increase the content in the leaves, whereas it down-regulated the expression of genes in the gibberellin (GA) biosynthesis pathway to decrease the content. Application of CK to leaves enhanced the wavy phenotype, while application of GA dramatically flattened the leaves. We conclude that the changes in CK and GA contents that result from high expression of LsKN1 switch determinate cells to indeterminate, and consequently leads to the development of wavy leaves.


Asunto(s)
Citocininas , Lactuca , Lactuca/genética , Lactuca/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Regulación hacia Arriba , Hojas de la Planta/metabolismo
13.
Theor Appl Genet ; 135(2): 473-483, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34716468

RESUMEN

KEY MESSAGE: We identified the loss of BoFLC gene as the cause of non-vernalization requirement in B. oleracea. Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops. Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (Brassica oleracea var. chinensis Lei), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog (BoFLC). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea, including Bo3g005470, Bo3g024250, Bo9g173370, and Bo9g173400. The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC, we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.


Asunto(s)
Brassica , Brassica/genética , China , Flores/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo
14.
Plant J ; 104(3): 613-630, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32772408

RESUMEN

Lettuce (Lactuca sativa L.) is an important vegetable crop species worldwide. The primary metabolism of this species is essential for its growth, development and reproduction as well as providing a considerable direct source of energy and nutrition for humans. Here, through investigating 77 primary metabolites in 189 accessions including all major horticultural types and wild lettuce L. serriola we showed that the metabolites in L. serriola were different from those in cultivated lettuce. The findings were consistent with the demographic model of lettuce and supported a single domestication event for this species. Selection signals among these metabolic traits were detected. Specifically, galactinol, malate, quinate and threonate were significantly affected by the domestication process and cultivar differentiation of lettuce. Galactinol and raffinose might have been selected during stem lettuce cultivation as an adaption to the local environments in China. Furthermore, we identified 154 loci significantly associated with the level of 51 primary metabolites. Three genes (LG8749721, LG8763094 and LG5482522) responsible for the levels of galactinol, raffinose, quinate and chlorogenic acid were further dissected, which may have been the target of domestication and/or affected by local adaptation. Additionally, our findings strongly suggest that human selection resulted in reduced quinate and chlorogenic acid levels in cultivated lettuce. Our study thus provides beneficial genetic resources for lettuce quality improvement and sheds light on the domestication and evolution of this important leafy green.


Asunto(s)
Lactuca/metabolismo , Hojas de la Planta/metabolismo , Estudio de Asociación del Genoma Completo , Lactuca/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
BMC Plant Biol ; 21(1): 203, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910512

RESUMEN

BACKGROUND: Fruit flesh color in watermelon (Citrullus lanatus) is a great index for evaluating the appearance quality and a key contributor influencing consumers' preferences. But the molecular mechanism of this intricate trait remains largely unknown. Here, the carotenoids and transcriptome dynamics during the fruit development of cultivated watermelon with five different flesh colors were analyzed. RESULTS: A total of 13 carotenoids and 16,781 differentially expressed genes (DEGs), including 1295 transcription factors (TFs), were detected in five watermelon genotypes during the fruit development. The comprehensive accumulation patterns of carotenoids were closely related to flesh color. A number of potential structural genes and transcription factors were found to be associated with the carotenoid biosynthesis pathway using comparative transcriptome analysis. The differentially expressed genes were divided into six subclusters and distributed in different GO terms and metabolic pathways. Furthermore, we performed weighted gene co-expression network analysis and predicted the hub genes in six main modules determining carotenoid contents. Cla018406 (a chaperone protein dnaJ-like protein) may be a candidate gene for ß-carotene accumulation and highly expressed in orange flesh-colored fruit. Cla007686 (a zinc finger CCCH domain-containing protein) was highly expressed in the red flesh-colored watermelon, maybe a key regulator of lycopene accumulation. Cla003760 (membrane protein) and Cla021635 (photosystem I reaction center subunit II) were predicted to be the hub genes and may play an essential role in yellow flesh formation. CONCLUSIONS: The composition and contents of carotenoids in five watermelon genotypes vary greatly. A series of candidate genes were revealed through combined analysis of metabolites and transcriptome. These results provide an important data resource for dissecting candidate genes and molecular basis governing flesh color formation in watermelon fruit.


Asunto(s)
Carotenoides/metabolismo , Citrullus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Transcriptoma , Citrullus/crecimiento & desarrollo , Citrullus/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Genotipo , Licopeno/metabolismo , Redes y Vías Metabólicas , Fenotipo , Pigmentación , Factores de Transcripción/genética , beta Caroteno/metabolismo
16.
Plant Biotechnol J ; 18(2): 479-490, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31325407

RESUMEN

Anthocyanins protect plants from biotic and abiotic stressors and provide great health benefits to consumers. In this study, we cloned four genes (Red Lettuce Leaves 1 to 4: RLL1 to RLL4) that contribute to colour variations in lettuce. The RLL1 gene encodes a bHLH transcription factor, and a 5-bp deletion in some cultivars abolishes its function to activate the anthocyanin biosynthesis pathway. The RLL2 gene encodes an R2R3-MYB transcription factor, which was derived from a duplication followed by mutations in its promoter region. The RLL3 gene encodes an R2-MYB transcription factor, which down-regulates anthocyanin biosynthesis through competing with RLL2 for interaction with RLL1; a mis-sense mutation compromises the capacity of RLL3 to bind RLL1. The RLL4 gene encodes a WD-40 transcription factor, homologous to the RUP genes suppressing the UV-B signal transduction pathway in Arabidopsis; a mis-sense mutation in rll4 attenuates its suppressing function, leading to a high concentration of anthocyanins. Sequence analysis of the RLL1-RLL4 genes from wild and cultivated lettuce showed that their function-changing mutations occurred after domestication. The mutations in rll1 disrupt anthocyanin biosynthesis, while the mutations in RLL2, rll3 and rll4 activate anthocyanin biosynthesis, showing disruptive selection for leaf colour during domestication of lettuce. The characterization of multiple polymorphic genes in this study provides the necessary molecular resources for the rational breeding of lettuce cultivars with distinct levels of red pigments and green cultivars with high levels of health-promoting flavonoids.


Asunto(s)
Antocianinas , Domesticación , Lactuca , Pigmentación , Hojas de la Planta , Antocianinas/genética , Regulación de la Expresión Génica de las Plantas , Lactuca/genética , Lactuca/metabolismo , Pigmentación/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Selección Genética
17.
Theor Appl Genet ; 132(4): 895-906, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30467611

RESUMEN

KEY MESSAGE: Transposon insertion and point mutation independently activated the BoMYB2 gene in three purple cultivars of Brassica oleracea including kale, kohlrabi, and cabbage. Several varieties of B. oleracea have both green and purple cultivars. In this study, the causal genes for the purple traits in kale, kohlrabi and cabbage were cloned using map-based cloning approach. The purple traits in all three varieties were mapped to the same locus as the BoMYB2 gene in cauliflower. Surprisingly, the insertion of Harbinger transposon of BoMYB2 in cauliflower was not found in purple kale, kohlrabi and cabbage. Sequencing of the BoMYB2 gene in purple kale and purple kohlrabi discovered a 7606 bp CACTA-like transposon in its promoter region. Transient assay and promoter activity study showed that the insertion upregulated the expression of the BoMYB2 gene. On the other hand, the activation of the BoMYB2 gene in purple cabbage was caused by point mutation and/or 1-bp insertion in its promoter region. Sequence analysis of the BoMYB2 gene in different varieties suggested that the activating events most likely occurred independently after the divergence of cabbage, cauliflower, and kale/kohlrabi. Our results not only contribute to a better understanding of anthocyanin inheritance in B. oleracea, but also provide useful information for future hybrid breeding of purple cultivars through combination of different functional alleles of the BoMYB2 gene.


Asunto(s)
Brassica/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Pigmentación/genética , Proteínas de Plantas/genética , Carácter Cuantitativo Heredable , Alelos , Antocianinas/metabolismo , Arabidopsis/genética , Secuencia de Bases , Vías Biosintéticas/genética , Elementos Transponibles de ADN/genética , Variación Genética , Genotipo , Mutación/genética , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Selección Genética
18.
Nature ; 496(7443): 91-5, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535592

RESUMEN

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Brachypodium/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Hordeum/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas , Poliploidía , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Triticum/fisiología
19.
Plant Biotechnol J ; 16(6): 1201-1213, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193661

RESUMEN

Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2-type zinc-finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA-mediated ROS-scavenging capacity of the SlZF3-overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein-protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP-mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico/biosíntesis , Complejo del Señalosoma COP9/metabolismo , Dedos de Zinc CYS2-HIS2 , Tolerancia a la Sal/genética , Solanum lycopersicum/genética , Arabidopsis , Peróxido de Hidrógeno/metabolismo
20.
Theor Appl Genet ; 131(4): 947-958, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29362832

RESUMEN

KEY MESSAGE: A 159 bp deletion in ClFS1 gene encoding IQD protein is responsible for fruit shape in watermelon. Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is known for its rich diversity in fruit size and shape. Fruit shape has been one of the major objectives of watermelon breeding. However, the candidate genes and the underlying genetic mechanism for such an important trait in watermelon are unknown. In this study, we identified a locus on chromosome 3 of watermelon genome controlling fruit shape. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines "Duan125" (elongate fruit) and "Zhengzhouzigua" (spherical fruit) suggests that fruit shape of watermelon is controlled by a single locus and elongate fruit (OO) is incompletely dominant to spherical fruit (oo) with the heterozygote (Oo) being oval fruit. GWAS profiles among 315 accessions identified a major locus designated on watermelon chromosome 3, which was confirmed by BSA-seq mapping in the F2 population. The candidate gene was mapped to a region 46 kb on chromosome 3. There were only four genes present in the corresponding region in the reference genome. Four candidate genes were sequenced in this region, revealing that the CDS of Cla011257 had a 159 bp deletion which resulted in the omission of 53 amino acids in elongate watermelon. An indel marker was derived from the 159 bp deletion to test the F2 population and 105 watermelon accessions. The results showed that Cla011257 cosegregated with watermelon fruit shape. In addition, the Cla011257 expression was the highest at ovary formation stage. The predicted protein of the Cla011257 gene fitted in IQD protein family which was reported to have association with cell arrays and Ca2+-CaM signaling modules. Clear understanding of the genes facilitating the fruit shape along with marker association selection will be an effective way to develop new cultivars.


Asunto(s)
Citrullus/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Alelos , Mapeo Cromosómico , Citrullus/crecimiento & desarrollo , Estudios de Asociación Genética , Marcadores Genéticos , Mutación INDEL , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA