Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047271

RESUMEN

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.


Asunto(s)
Eucariontes , Canales de Potasio de Dominio Poro en Tándem , Eucariontes/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Sistema Libre de Células/metabolismo , Dimerización , Bioensayo
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769142

RESUMEN

G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R). GLP-1R was synthesized in eukaryotic lysates harboring endogenous endoplasmic reticulum-derived microsomes enabling the embedment of GLP-1R in a natural membrane. Interestingly, we found that these microsomes spontaneously adsorbed to magnetic Neutravidin beads thus providing immobilized membrane protein preparations which required no additional manipulation of the target receptor or its supporting membrane. The accessibility of the extracellular domain of membrane-embedded and bead-immobilized GLP-1R was demonstrated by bead-based enzyme-linked immunosorbent assay (ELISA) using GLP-1R-specific monoclonal antibodies. In addition, ligand binding of immobilized GLP-1R was verified in a radioligand binding assay. In summary, we present an easy and straightforward synthesis and immobilization methodology of an active GPCR which can be beneficial for studying membrane proteins in general.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Receptores Acoplados a Proteínas G , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430170

RESUMEN

Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.


Asunto(s)
Inmunotoxinas , Anticuerpos de Cadena Única , Animales , Cricetinae , Sistema Libre de Células , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Escherichia coli/genética , Células CHO , Cricetulus , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología , Eucariontes
4.
Appl Microbiol Biotechnol ; 105(12): 4957-4973, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34129082

RESUMEN

To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)-specific monoclonal antibody (mAb), the Escherichia coli-expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli-expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient-derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. KEY POINTS: • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells.


Asunto(s)
Virus de la Hepatitis E , Animales , Anticuerpos Monoclonales , Células CHO , Cápside , Proteínas de la Cápside , Cricetinae , Cricetulus , Escherichia coli , Humanos , Ratones , Ratones Endogámicos BALB C
5.
Biotechnol Bioeng ; 114(10): 2328-2338, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28574582

RESUMEN

The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein-coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell-free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell-free system, performed within a short time and in a cost-effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect-based cell-free system. Moreover, we have chosen the µ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell-free synthesized MOR in comparison to MOR expressed in a human cell line by "one-point" radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328-2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Asunto(s)
Fraccionamiento Celular/métodos , Mejoramiento Genético/métodos , Insectos/metabolismo , Ingeniería de Proteínas/métodos , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Células HEK293 , Humanos , Insectos/química , Receptores Acoplados a Proteínas G/química
6.
Biochim Biophys Acta ; 1838(5): 1382-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24370776

RESUMEN

Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50 µm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces.


Asunto(s)
Proteínas de la Membrana/síntesis química , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Liposomas Unilamelares/metabolismo , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/metabolismo , Biomimética/métodos , Sistema Libre de Células , Insectos , Lípidos/química , Liposomas/metabolismo , Membranas/metabolismo , Microsomas/química , Modelos Biológicos , Liposomas Unilamelares/química
7.
Chembiochem ; 16(17): 2420-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26478227

RESUMEN

From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.


Asunto(s)
Sistema Libre de Células , Eucariontes/metabolismo , Células Procariotas/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Archaea/metabolismo , Escherichia coli/metabolismo , Hongos/metabolismo , Insectos/metabolismo , Plantas/metabolismo
8.
Anal Biochem ; 451: 4-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24491444

RESUMEN

Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA-synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: ß-glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.


Asunto(s)
Azidas/química , Eritropoyetina/metabolismo , Colorantes Fluorescentes/química , Glucuronidasa/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Sistema Libre de Células , Electroforesis en Gel de Poliacrilamida , Eritropoyetina/química , Eritropoyetina/genética , Glucuronidasa/química , Glucuronidasa/genética , Humanos , Fenilalanina/química , Fenilalanina/metabolismo , Células Sf9/metabolismo , Triticum/metabolismo
9.
Biotechnol Bioeng ; 111(1): 25-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24018795

RESUMEN

Protein expression systems are widely used in biotechnology and medicine for the efficient and economic production of therapeutic proteins. Today, cultivated Chinese hamster ovary (CHO) cells are the market dominating mammalian cell-line for the production of complex therapeutic proteins. Despite this outstanding potential of CHO cells, no high-yield cell-free system based on translationally active lysates from these cells has been reported so far. To date, CHO cell extracts have only been used as a foundational research tool for understanding mRNA translation (Lodish et al., 1974; McDowell et al., 1972). In the present study, we address this fact by establishing a novel cell-free protein expression system based on extracts from cultured CHO cells. Lysate preparation, adaptation of in vitro reaction conditions and the construction of particular expression vectors are considered for high-yield protein production. A specific in vitro expression vector, which includes an internal ribosome entry site (IRES) from the intergenic region (IGR) of the Cricket paralysis virus (CrPV), has been constructed in order to obtain optimal performance. The IGR IRES is supposed to bind directly to the eukaryotic 40S ribosomal subunit thereby bypassing the process of translation initiation, which is often a major bottleneck in cell-free systems. The combination of expression vector and optimized CHO cell extracts enables the production of approximately 50 µg/mL active firefly luciferase within 4 h. The batch-type cell-free coupled transcription-translation system has the potential to perform post-translational modifications, as shown by the glycosylation of erythropoietin. Accordingly, the system contains translocationally active endogenous microsomes, enabling the co-translational incorporation of membrane proteins into biological membranes. Hence, the presented in vitro translation system is a powerful tool for the fast and convenient optimization of expression constructs, the specific labeling of integral membrane proteins and the cell-free production of posttranslationally modified proteins.


Asunto(s)
Biotecnología/métodos , Sistema Libre de Células , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Cricetinae , Cricetulus , ADN Intergénico/genética , Glicoproteínas/biosíntesis , Glicoproteínas/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Proteínas Recombinantes/metabolismo
10.
Bioengineering (Basel) ; 11(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247969

RESUMEN

Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.

11.
Methods Mol Biol ; 2762: 293-308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315373

RESUMEN

Although membrane proteins are abundant in nature, their investigation is limited due to bottlenecks in heterologous overexpression and consequently restricted accessibility for downstream applications. In this chapter, we address these challenges by presenting a fast and straightforward synthesis platform based on eukaryotic cell-free protein synthesis (CFPS) and an efficient solubilization strategy using styrene-maleic acid (SMA) copolymers. We demonstrate CFPS of TWIK-1, a dimeric ion channel, based on Sf21 (Spodoptera frugiperda) insect lysate showing homooligomerization and N-glycosylation enabled by endoplasmic reticulum-derived microsomes. Furthermore, we employ SMA copolymers for protein solubilization, which preserves the native-like microsomal environment. This approach not only retains the solubilized protein's suitability for downstream applications but also maintains the oligomerization and glycosylation of TWIK-1 post-solubilization. We validate the solubilization procedure using autoradiography, particle size analysis, and biomolecular fluorescence assay and confirm the very efficient, structurally intact solubilization of cell-free synthesized TWIK-1.


Asunto(s)
Maleatos , Poliestirenos , Proteínas de la Membrana
12.
Synth Syst Biotechnol ; 9(3): 416-424, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38601208

RESUMEN

Chinese hamster ovary (CHO) cells are crucial in biopharmaceutical production due to their scalability and capacity for human-like post-translational modifications. However, toxic proteins and membrane proteins are often difficult-to-express in living cells. Alternatively, cell-free protein synthesis can be employed. This study explores innovative strategies for enhancing the production of challenging proteins through the modification of CHO cells by investigating both, cell-based and cell-free approaches. A major result in our study involves the integration of a mutant eIF2 translation initiation factor and T7 RNA polymerase into CHO cell lysates for cell-free protein synthesis. This resulted in elevated yields, while eliminating the necessity for exogenous additions during cell-free production, thereby substantially enhancing efficiency. Additionally, we explore the potential of the Rosa26 genomic site for the integration of T7 RNA polymerase and cell-based tetracycline-controlled protein expression. These findings provide promising advancements in bioproduction technologies, offering flexibility to switch between cell-free and cell-based protein production as needed.

13.
Sci Rep ; 14(1): 1271, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218994

RESUMEN

Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Animales , Humanos , NADP , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microsomas/metabolismo , Luciferasas , Microsomas Hepáticos/metabolismo , Mamíferos/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1865(5): 184144, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889502

RESUMEN

Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.


Asunto(s)
Canales de Sodio Activados por Voltaje , Cricetinae , Animales , Humanos , Cricetulus , Células CHO , Proteínas de la Membrana , Lidocaína
15.
Adv Biochem Eng Biotechnol ; 186: 103-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37640910

RESUMEN

Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include 'difficult-to-express' membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins. Here we demonstrate the applicability of the eukaryotic cell-free systems based on lysates from the mammalian Chinese Hamster Ovary (CHO) and insect Spodoptera frugiperda (Sf21) cells. We demonstrate the efficiency of the systems in the de novo cell-free synthesis of the human cardiac ion channels: ether-a-go-go potassium channel (hERG) KV11.1 and the voltage-gated sodium channel hNaV1.5.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Corazón , Animales , Cricetinae , Humanos , Canales de Potasio Éter-A-Go-Go/genética , Células CHO , Cricetulus , Proteínas de la Membrana
16.
Cells ; 12(17)2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37681872

RESUMEN

In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Animales , Cricetinae , Humanos , Células CHO , Cricetulus , Citocromo P-450 CYP3A/genética , Biotransformación
17.
Sci Rep ; 13(1): 6394, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076514

RESUMEN

With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG. Since PEG is not only applied in therapeutics, but can also be found in foods and cosmetics, anti-PEG-antibodies can occur even without a medical treatment. Hypersensitivity to PEG thereby can lead to a reduced drug efficiency, fast blood clearance and in rare cases anaphylactic reactions. Therefore, finding alternatives for PEG is crucial. In this study, we present linear polyglycerol (LPG) for bioconjugation as an alternative polymer to PEG. We report the conjugation of LPG and PEG by click-chemistry to the glycoprotein erythropoietin (EPO), synthesized in a eukaryotic cell-free protein synthesis system. Furthermore, the influence of the polymers on EPOs stability and activity on a growth hormone dependent cell-line was evaluated. The similar characteristics of both bioconjugates show that LPGylation can be a promising alternative to PEGylation.


Asunto(s)
Eritropoyetina , Polietilenglicoles , Polímeros , Glicerol
18.
Sci Rep ; 13(1): 15236, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709815

RESUMEN

Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antifibrinolíticos , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Sistema Libre de Células , Colorantes
19.
Sci Rep ; 12(1): 20742, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456667

RESUMEN

Understanding the assembly mechanism and function of membrane proteins is a fundamental problem in biochemical research. Among the membrane proteins, G protein-coupled receptors (GPCRs) represent the largest class in the human body and have long been considered to function as monomers. Nowadays, the oligomeric assembly of GPCRs is widely accepted, although the functional importance and therapeutic intervention remain largely unexplored. This is partly due to difficulties in the heterologous production of membrane proteins. Cell-free protein synthesis (CFPS) with its endogenous endoplasmic reticulum-derived structures has proven as a technique to address this issue. In this study, we investigate for the first time the conceptual CFPS of a heteromeric GPCR, the γ-aminobutyric acid receptor type B (GABAB), from its protomers BR1 and BR2 using a eukaryotic cell-free lysate. Using a fluorescence-based proximity ligation assay, we provide evidence for colocalization and thus suggesting heterodimerization. We prove the heterodimeric assembly by a bioluminescence resonance energy transfer saturation assay providing the manufacturability of a heterodimeric GPCR by CFPS. Additionally, we show the binding of a fluorescent orthosteric antagonist, demonstrating the feasibility of combining the CFPS of GPCRs with pharmacological applications. These results provide a simple and powerful experimental platform for the synthesis of heteromeric GPCRs and open new perspectives for the modelling of protein-protein interactions. Accordingly, the presented technology enables the targeting of protein assemblies as a new interface for pharmacological intervention in disease-relevant dimers.


Asunto(s)
Eucariontes , Receptores de GABA , Sistema Libre de Células , Ácido gamma-Aminobutírico , Proteínas de la Membrana
20.
Front Bioeng Biotechnol ; 10: 896763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573250

RESUMEN

Cell-free systems are well-established platforms for the rapid synthesis, screening, engineering and modification of all kinds of recombinant proteins ranging from membrane proteins to soluble proteins, enzymes and even toxins. Also within the antibody field the cell-free technology has gained considerable attention with respect to the clinical research pipeline including antibody discovery and production. Besides the classical full-length monoclonal antibodies (mAbs), so-called "nanobodies" (Nbs) have come into focus. A Nb is the smallest naturally-derived functional antibody fragment known and represents the variable domain (VHH, ∼15 kDa) of a camelid heavy-chain-only antibody (HCAb). Based on their nanoscale and their special structure, Nbs display striking advantages concerning their production, but also their characteristics as binders, such as high stability, diversity, improved tissue penetration and reaching of cavity-like epitopes. The classical way to produce Nbs depends on the use of living cells as production host. Though cell-based production is well-established, it is still time-consuming, laborious and hardly amenable for high-throughput applications. Here, we present for the first time to our knowledge the synthesis of functional Nbs in a standardized mammalian cell-free system based on Chinese hamster ovary (CHO) cell lysates. Cell-free reactions were shown to be time-efficient and easy-to-handle allowing for the "on demand" synthesis of Nbs. Taken together, we complement available methods and demonstrate a promising new system for Nb selection and validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA