RESUMEN
The claustrum (CLA) is a cluster of neurons located between the insular cortex and striatum. Many studies have shown that the CLA plays an important role in higher brain function. Additionally, growing evidence suggests that CLA dysfunction is associated with neuropsychological symptoms. However, how the CLA is formed during development is not fully understood. In the present study, we analyzed the development of the CLA, especially focusing on the migration profiles of CLA neurons in mice of both sexes. First, we showed that CLA neurons were generated between embryonic day (E) 10.5 and E12.5, but mostly at E11.5. Next, we labeled CLA neurons born at E11.5 using the FlashTag technology and revealed that most neurons reached the brain surface by E13.5 but were distributed deep in the CLA 1 d later at E14.5. Time-lapse imaging of GFP-labeled cells revealed that some CLA neurons first migrated radially outward and then changed their direction inward after reaching the surface. Moreover, we demonstrated that Reelin signal is necessary for the appropriate distribution of CLA neurons. The switch from outward to "reversed" migration of developing CLA neurons is distinct from other migration modes, in which neurons typically migrate in a certain direction, which is simply outward or inward. Future elucidation of the characteristics and precise molecular mechanisms of CLA development may provide insights into the unique cognitive functions of the CLA.SIGNIFICANCE STATEMENT The claustrum (CLA) plays an important role in higher brain function, and its dysfunction is associated with neuropsychological symptoms. Although psychiatric disorders are increasingly being understood as disorders of neurodevelopment, little is known about CLA development, including its neuronal migration profiles and underlying molecular mechanisms. Here, we investigated the migration profiles of CLA neurons during development and found that they migrated radially outward and then inward after reaching the surface. This switch in the migratory direction from outward to inward may be one of the brain's fundamental mechanisms of nuclear formation. Our findings enable us to investigate the relationship between CLA maldevelopment and dysfunction, which may facilitate understanding of the pathogenesis of some psychiatric disorders.
Asunto(s)
Claustro , Femenino , Masculino , Ratones , Animales , Claustro/fisiología , Neuronas/fisiología , Movimiento Celular/fisiología , Cuerpo Estriado , NeurogénesisRESUMEN
The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.
Asunto(s)
Neuronas , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Neuronas/fisiología , Cognición , Memoria a Corto Plazo/fisiología , Channelrhodopsins/genéticaRESUMEN
The actin cytoskeleton is crucial for neuronal migration in the mammalian developing cerebral cortex. The adaptor protein Drebrin-like (Dbnl) plays important roles in reorganization of the actin cytoskeleton, dendrite formation, and endocytosis by interacting with F-actin, cobl, and dynamin. Although Dbnl is known to be expressed in the brain, the functions of this molecule during brain development are largely unknown. In this study, to examine the roles of Dbnl in the developing cerebral cortex, we conducted experiments using mice of both sexes with knockdown of Dbnl, effected by in utero electroporation, in the migrating neurons of the embryonic cortex. Time-lapse imaging of the Dbnl-knockdown neurons revealed that the presence of Dbnl is a prerequisite for appropriate formation of processes in the multipolar neurons in the multipolar cell accumulation zone or the deep part of the subventricular zone, and for neuronal polarization and entry into the cortical plate. We found that Dbnl knockdown decreased the amount of N-cadherin protein expressed on the plasma membrane of the cortical neurons. The defect in neuronal migration caused by Dbnl knockdown was rescued by moderate overexpression of N-cadherin and αN-catenin or by transfection of the phospho-mimic form (Y337E, Y347E), but not the phospho-resistant form (Y337F, Y347F), of Dbnl. These results suggest that Dbnl controls neuronal migration, neuronal multipolar morphology, and cell polarity in the developing cerebral cortex via regulating N-cadherin expression.SIGNIFICANCE STATEMENT Disruption of neuronal migration can cause neuronal disorders, such as lissencephaly and subcortical band heterotopia. During cerebral cortical development, the actin cytoskeleton plays a key role in neuronal migration; however, the mechanisms of regulation of neuronal migration by the actin cytoskeleton still remain unclear. Herein, we report that the novel protein Dbnl, an actin-binding protein, controls multiple events during neuronal migration in the developing mouse cerebral cortex. We also showed that this regulation is mediated by phosphorylation of Dbnl at tyrosine residues 337 and 347 and αN-catenin/N-cadherin, suggesting that the Dbnl-αN-catenin/N-cadherin pathway is important for neuronal migration in the developing cortex.
Asunto(s)
Cadherinas/biosíntesis , Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Proteínas de Microfilamentos/fisiología , Neuronas/fisiología , Dominios Homologos src/fisiología , Animales , Cadherinas/genética , Membrana Celular/metabolismo , Corteza Cerebral/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Neuronas/ultraestructura , Embarazo , Dominios Homologos src/genéticaRESUMEN
Reelin is an essential glycoprotein for the establishment of the highly organized six-layered structure of neurons of the mammalian neocortex. Although the role of Reelin in the control of neuronal migration has been extensively studied at the molecular level, the mechanisms underlying Reelin-dependent neuronal layer organization are not yet fully understood. In this study, we directly showed that Reelin promotes adhesion among dissociated neocortical neurons in culture. The Reelin-mediated neuronal aggregation occurs in an N-cadherin-dependent manner, both in vivo and in vitro. Unexpectedly, however, in a rotation culture of dissociated neocortical cells that gradually reaggregated over time, we found that it was the neural progenitor cells [radial glial cells (RGCs)], rather than the neurons, that tended to form clusters in the presence of Reelin. Mathematical modeling suggested that this clustering of RGCs could be recapitulated if the Reelin-dependent promotion of neuronal adhesion were to occur only transiently. Thus, we directly measured the adhesive force between neurons and N-cadherin by atomic force microscopy, and found that Reelin indeed enhanced the adhesiveness of neurons to N-cadherin; this enhanced adhesiveness began to be observed at 30 min after Reelin stimulation, but declined by 3 h. These results suggest that Reelin transiently (and not persistently) promotes N-cadherin-mediated neuronal aggregation. When N-cadherin and stabilized ß-catenin were overexpressed in the migrating neurons, the transfected neurons were abnormally distributed in the superficial region of the neocortex, suggesting that appropriate regulation of N-cadherin-mediated adhesion is important for correct positioning of the neurons during neocortical development.
Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular Neuronal/fisiología , Adhesión Celular/fisiología , Proteínas de la Matriz Extracelular/fisiología , Neocórtex/embriología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Serina Endopeptidasas/fisiología , beta Catenina/metabolismo , Animales , Cadherinas/genética , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Células Cultivadas , Células Ependimogliales , Proteínas de la Matriz Extracelular/genética , Femenino , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Microscopía de Fuerza Atómica , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/ultraestructura , Proteína Reelina , Serina Endopeptidasas/genética , Imagen Individual de MoléculaRESUMEN
While neurons of the human cerebral cortex are mainly distributed in the gray matter, the white matter (WM) also contains some excitatory and inhibitory neurons, so-called WM neurons. Studies on the cytoarchitectural alterations in the brains of patients with neuropsychiatric disorders have repeatedly reported increased densities of the WM neurons in a proportion of patients with schizophrenia and autism spectrum disorder. Although some studies have demonstrated increased densities of superficial WM neurons, others have demonstrated increased densities of deep WM neurons and increased WM neuron densities can be considered as one of the cross-disease features of neuropsychiatric disorders. Nevertheless, what actually causes the increase in the densities of the WM neurons still remains under debate, and several hypothetical mechanisms have been proposed. The WM neurons in normal brains are considered as remnants of the subplate neurons, which represent a transient cytoarchitectural zone present during development of the mammalian neocortex; it has been suggested that increased densities of the WM neurons could result from inappropriate apoptosis of the subplate neurons in the brains of patients with neuropsychiatric disorders. On the other hand, recent experimental studies have demonstrated that genetic and environmental factors that enhance the risk of development of neuropsychiatric disorders could cause altered distribution of neurons in the WM. To understand the pathophysiology underlying the increased densities of the WM neurons, it is important to investigate the cellular characteristics of the WM neurons in the brains of both normal subjects and patients with neuropsychiatric disorders.
Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Cerebral/patología , Neuronas/patología , Esquizofrenia/patología , Sustancia Blanca/patología , Corteza Cerebral/citología , Humanos , Neuronas/citología , Sustancia Blanca/citologíaRESUMEN
AIM: Recent advances in perinatal and neonatal medicine have resulted in marked improvements in the survival rates of extremely preterm infants (born before 28 gestational weeks) around the world, and Japan is among the countries with the highest reported survival rates of extremely preterm infants. However, it remains a major concern that many survivors develop neurodevelopmental disabilities, including cognitive dysfunctions and neurodevelopmental disorders later in life. In order to understand the pathophysiological mechanisms underlying the neurodevelopmental disabilities observed in the survivors of extremely preterm births, we reviewed recently reported findings about the development of the human neocortex. METHODS: First, we have summarized the current knowledge about the development of the neocortex, including recently reported human- and/or primate-specific developmental events. Next, we discussed the possible causal mechanisms underlying the development of neurodevelopmental disabilities in extremely preterm infants. RESULTS: Around the birth of extremely preterm infants, neurogenesis and succeeding neuronal migrations are ongoing in the neocortex of human brain. Expansion and maturation of the subplate, which is thought to reflect the axonal wiring in the neocortex, is also prominent at this time. CONCLUSION: Brain injuries that occur around the birth of extremely preterm infants are presumed to affect the dynamic developmental events in the neocortex, such as neurogenesis, neuronal migrations and maturation of the subplate, which could underlie the neurodevelopmental disabilities that often develop subsequently in extremely preterm infants. These possibilities should be borne in mind while considering maternal and neonatal care to further improve the long-term outcomes of extremely preterm infants.
Asunto(s)
Neocórtex , Trastornos del Neurodesarrollo , Niño , Discapacidades del Desarrollo/epidemiología , Femenino , Edad Gestacional , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Japón , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/etiologíaRESUMEN
Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex.
Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Neuronas/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Corteza Cerebral/citología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Integrinas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Reelina , Proteínas de Unión al GTP rap1/metabolismoRESUMEN
The preoptic area (POa) of the rostral diencephalon supplies the neocortex and the amygdala with GABAergic neurons in the developing mouse brain. However, the molecular mechanisms that determine the pathway and destinations of POa-derived neurons have not yet been identified. Here we show that Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-induced expression of Neuropilin-2 (Nrp2) and its down-regulation control the destination of POa-derived GABAergic neurons. Initially, a majority of the POa-derived migrating neurons express COUP-TFII and form a caudal migratory stream toward the caudal subpallium. When a subpopulation of cells steers toward the neocortex, they exhibit decreased expression of COUP-TFII and Nrp2. The present findings show that suppression of COUP-TFII/Nrp2 changed the destination of the cells into the neocortex, whereas overexpression of COUP-TFII/Nrp2 caused cells to end up in the medial part of the amygdala. Taken together, these results reveal that COUP-TFII/Nrp2 is a molecular switch determining the pathway and destination of migrating GABAergic neurons born in the POa.
Asunto(s)
Encéfalo/metabolismo , Factor de Transcripción COUP II/metabolismo , Diencéfalo/metabolismo , Neuronas GABAérgicas/metabolismo , Neuropilina-2/metabolismo , Amígdala del Cerebelo/embriología , Amígdala del Cerebelo/metabolismo , Animales , Western Blotting , Encéfalo/embriología , Factor de Transcripción COUP II/genética , Movimiento Celular/genética , Diencéfalo/embriología , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones Endogámicos ICR , Ratones Noqueados , Microscopía Confocal , Neocórtex/embriología , Neocórtex/metabolismo , Neuropilina-2/genética , Área Preóptica/embriología , Área Preóptica/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas de Cultivo de TejidosRESUMEN
The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (c9FTD/ALS). Recently, it was reported that an unconventional mechanism of repeat-associated non-ATG (RAN) translation arises from C9orf72 expansion. Sense and anti-sense transcripts of the expanded C9orf72 repeat, i.e. the dipeptide repeat protein (DRP) of glycine-alanine (poly-GA), glycine-proline (poly-GP), glycine-arginine (poly-GR), proline-arginine (poly-PR) and proline-alanine (poly-PA), are deposited in the brains of patients with c9FTD/ALS. However, the pathological significance of RAN-translated peptides remains unknown. We generated synthetic cDNAs encoding 100 repeats of DRP without a GGGGCC repeat and evaluated the effects of these proteins on cultured cells and cortical neurons in vivo. Our results revealed that the poly-GA protein formed highly aggregated ubiquitin/p62-positive inclusion bodies in neuronal cells. In contrast, the highly basic proteins poly-GR and PR also formed unique ubiquitin/p62-negative cytoplasmic inclusions, which co-localized with the components of RNA granules. The evaluation of cytotoxicity revealed that overexpressed poly-GA, poly-GP and poly-GR increased the substrates of the ubiquitin-proteasome system (UPS), including TDP-43, and enhanced the sensitivity to a proteasome inhibitor, indicating that these DRPs are cytotoxic, possibly via UPS dysfunction. The present data indicate that a gain-of-function mechanism of toxic DRPs possibly contributes to pathogenesis in c9FTD/ALS and that DRPs may serve as novel therapeutic targets in c9FTD/ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Cuerpos de Inclusión/metabolismo , Proteínas/genética , Ubiquitina/metabolismo , Animales , Proteína C9orf72 , Corteza Cerebral/fisiopatología , Chlorocebus aethiops , Demencia Frontotemporal/metabolismo , Humanos , Ratones , Neuronas/patología , Proteínas/metabolismo , Secuencias Repetitivas de AminoácidoRESUMEN
Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons in mice. Unphosphorylated DISC1 regulates canonical Wnt signalling via an interaction with GSK3ß, whereas specific phosphorylation at serine 710 (S710) triggers the recruitment of Bardet-Biedl syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, whereas DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, whereas a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and indicate that phosphorylation of this protein at S710 activates a key developmental switch.
Asunto(s)
Corteza Cerebral/embriología , Proteínas del Tejido Nervioso , Neuronas/citología , Neuronas/fisiología , Células Madre/citología , Animales , Células COS , Movimiento Celular/genética , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Células PC12 , Fosforilación , Unión Proteica , Ratas , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMEN
During brain development, Reelin exerts a variety of effects in a context-dependent manner, whereas its underlying molecular mechanisms remain poorly understood. We previously showed that the C-terminal region (CTR) of Reelin is required for efficient induction of phosphorylation of Dab1, an essential adaptor protein for canonical Reelin signaling. However, the physiological significance of the Reelin CTR in vivo remains unexplored. To dissect out Reelin functions, we made a knock-in (KI) mouse in which the Reelin CTR is deleted. The amount of Dab1, an indication of canonical Reelin signaling strength, is increased in the KI mouse, indicating that the CTR is necessary for efficient induction of Dab1 phosphorylation in vivo. Formation of layer structures during embryonic development is normal in the KI mouse. Intriguingly, the marginal zone (MZ) of the cerebral cortex becomes narrower at postnatal stages because upper-layer neurons invade the MZ and their apical dendrites are misoriented and poorly branched. Furthermore, Reelin undergoes proteolytic cleavage by proprotein convertases at a site located 6 residues from the C terminus, and it was suggested that this cleavage abrogates the Reelin binding to the neuronal cell membrane. Results from ectopic expression of mutant Reelin proteins in utero suggest that the dendrite development and maintenance of the MZ require Reelin protein with an intact CTR. These results provide a novel model regarding Reelin functions involving its CTR, which is not required for neuronal migration during embryonic stages but is required for the development and maintenance of the MZ in the postnatal cerebral cortex.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Técnicas de Sustitución del Gen/métodos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Proteolisis , Proteína ReelinaRESUMEN
Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.
Asunto(s)
Malformaciones del Desarrollo Cortical/fisiopatología , Trastornos Mentales/fisiopatología , Corteza Prefrontal/fisiopatología , Corteza Somatosensorial/fisiopatología , Animales , Genes Inmediatos-Precoces , Aprendizaje por Laberinto , Memoria , Ratones , Corteza Prefrontal/anomalías , Corteza Prefrontal/metabolismo , Conducta Social , Corteza Somatosensorial/anomalías , Corteza Somatosensorial/metabolismoRESUMEN
The hippocampus plays important roles in brain functions. Despite the importance of hippocampal functions, recent analyses of neuronal migration have mainly been performed on the cerebral neocortex, and the cellular mechanisms responsible for the formation of the hippocampus are not yet completely understood. Moreover, why a prolonged time is required for hippocampal neurons to complete their migration has been unexplainable for several decades. We analyzed the migratory profile of neurons in the developing mouse hippocampal CA1 region and found that the hippocampal pyramidal neurons generated near the ventricle became postmitotic multipolar cells and accumulated in the multipolar cell accumulation zone (MAZ) in the late stage of development. The hippocampal neurons passed through the pyramidal layer by a unique mode of migration. Their leading processes were highly branched and made contact with many radial fibers. Time-lapse imaging revealed that the migrating cells changed their scaffolds from the original radial fibers to other radial fibers, and as a result they proceed in a zigzag manner, with long intervals. The migrating cells in the hippocampus reminded us of "rock climbers" that instead of using their hands to pull up their bodies were using their leading processes to pull up their cell bodies. Because this mode of migration had never been described, we called it the "climbing" mode. The change from the "climbing" mode in the hippocampus to the "locomotion" mode in the neocortex may have contributed to the brain expansion during evolution.
Asunto(s)
Movimiento Celular/fisiología , Neurogénesis/fisiología , Células Piramidales/citología , Células Piramidales/embriología , Animales , Hipocampo/citología , Hipocampo/embriología , Ratones , Imagen de Lapso de TiempoRESUMEN
Reelin-Dab1 signaling is indispensable for proper positioning of neurons in mammalian brain. Reelin is a glycoprotein secreted from Cajal-Reztuis cells in marginal zone of cerebral cortex, and its receptors are Apolipoprotein E receptor 2 (ApoER2) or very low density lipoprotein receptor (VLDLR) expressed on migrating neurons. When Reelin binds to ApoER2 or VLDLR, an adaptor protein Dab1 bound to the receptors undergoes Tyr phosphorylation that is essential for Reelin signaling. We reported previously that Cdk5-p35 phosphorylates Dab1 at Ser400 and Ser491 and the phosphorylation regulates its binding to CIN85, which is an SH3-containing multiadaptor protein involved in endocytic downregulation of receptor-tyrosine kinases. However, the interaction of CIN85 with Dab1 has not been addressed in neurons. We examined here a possibility that CIN85 has a role in Reelin signaling. We found nonpho-sphorylated Dab1-mediated colocalization of CIN85 with ApoER2. The colocalization of CIN85 with ApoER2 was increased in neurons stimulated with Reelin repeats 3-6, an active Reelin fragment. The stimulation recruited CIN85 to domains in plasma membrane where it colocalized with ApoER2 and Dab1 and then to EEA1-labeled early endosomes in the cytoplasm. In addition, Tyr phosphorylation of Dab1 strengthened the binding to CIN85. These results suggest that CIN85 participates in Reelin signaling through the binding to Dab1.
Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Moléculas de Adhesión Celular Neuronal/química , Corteza Cerebral/citología , Chlorocebus aethiops , Endocitosis , Endosomas/metabolismo , Proteínas de la Matriz Extracelular/química , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Neuronas/citología , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteína Reelina , Serina Endopeptidasas/química , Fracciones Subcelulares/metabolismoRESUMEN
The hippocampus has a highly ordered structure and is composed of distinct layers. Neuronal migration is an essential part of the process of the layer formation because neurons are primarily generated near the ventricle and must migrate to arrive at their final locations during brain development. Impairment of brain development is thought to underlie the etiology of psychiatric disorders. Consistent with this idea, many genetic risk factors for psychiatric disorders play critical roles during brain development. As one example, Disrupted-in-Schizophrenia-1 (DISC1) is a genetic risk factor for major psychiatric disorders and plays various roles during neurodevelopment. To examine the role of Disc1 in the hippocampal development, we suppressed expression of Disc1 in the CA1 region of the developing mouse hippocampus by using the RNA interference (RNAi) technology and an in utero electroporation system. Disc1 suppression was found to impair migration of the CA1 pyramidal neurons. This effect was especially apparent while the majority of the transfected neurons were passing through the stratum pyramidale of the developing hippocampus. The migration of neurons was restored by expression of an RNAi-resistant wild-type mouse Disc1, indicating that the migration defect was caused by specific suppression of Disc1. In the mature hippocampus, the migration defect resulted in malposition and disarray of the pyramidal neurons. These findings indicate that Disc1 is required for migration and layer formation by the CA1 pyramidal neurons during hippocampal development.
Asunto(s)
Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Células Piramidales/embriología , Animales , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Interferencia de ARNRESUMEN
Mammalian neocortex has a laminated structure that develops in a birth-date-dependent "inside-out" pattern. This layered structure is established by neuronal migration with sequential changes of the migratory mode regulated by several signaling cascades, including the Reelin-Disabled homolog 1 (Dab1) pathway. Although the importance of "locomotion," the major migratory mode, has been well established, the physiological significance of the mode change from locomotion to "terminal translocation," the final migratory mode, is unknown. In this study, we found that the outermost region of the mouse cortical plate has several histologically distinct features and named this region the primitive cortical zone (PCZ). Time-lapse analyses revealed that "locomoting" neurons paused transiently just beneath the PCZ before migrating into it by "terminal translocation." Furthermore, whereas Dab1-knockdown (KD) neurons could reach beneath the PCZ, they failed to enter the PCZ, suggesting that the Dab1-dependent terminal translocation is necessary for entry of the neurons into the PCZ. Importantly, sequential in utero electroporation experiments directly revealed that failure of the Dab1-dependent terminal translocation resulted in disruption of the inside-out alignment within the PCZ and that this disrupted pattern was still preserved in the mature cortex. Conversely, Dab1-KD locomoting neurons could pass by both wild-type and Dab1-KD predecessors beneath the PCZ. Our data indicate that the PCZ is a unique environment, passage of neurons through which involves molecularly and behaviorally different migratory mechanisms, and that the migratory mode change from locomotion to terminal translocation just beneath the PCZ is critical for the Dab1-dependent inside-out lamination in the mature cortex.
Asunto(s)
Morfogénesis/fisiología , Neocórtex/embriología , Neocórtex/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Animales , Movimiento Celular , Ratones , Ratones Endogámicos ICR , Neuronas/fisiología , Proteína ReelinaRESUMEN
Phencyclidine (PCP) is a noncompetitive NMDA receptor antagonist, and it induces schizophreniform cognitive deficits in healthy humans and similar cognitive deficits in rodents. Although the PCP-induced cognitive deficits appear to be accompanied and possibly caused by dysfunction of GABAergic inhibitory interneurons in the prefrontal cortex (PFC), the potential benefit(s) of GABAergic interneuron manipulations on PCP-induced cognitive deficits remains unexplored. In this study we show that when embryonic medial ganglionic eminence (MGE) cells, many of which differentiate into cortical GABAergic interneurons in situ, were grafted into the medial PFC (mPFC) of neonatal mice, they differentiated into a specific class of GABAergic interneurons and became functionally integrated into the host neuronal circuitry in adults. Prior MGE cell transplantation into the mPFC significantly prevented the induction of cognitive and sensory-motor gating deficits by PCP. The preventive effects were not reproduced by either transplantation of cortical projection neuron precursors into the mPFC or transplantation of MGE cells into the occipital cortex. The preventive effects of MGE cell transplantation into the mPFC were accompanied by activation of callosal projection neurons in the mPFC. These findings suggest that increasing GABAergic interneuron precursors in the PFC may contribute to the development of a cell-based approach as a novel means of modulating the PFC neuronal circuitry and preventing schizophreniform cognitive deficits.
Asunto(s)
Trastornos del Conocimiento/prevención & control , Células Madre Embrionarias/trasplante , Fenciclidina/toxicidad , Corteza Prefrontal/citología , Corteza Prefrontal/cirugía , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/cirugía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Corteza Prefrontal/embriología , EmbarazoRESUMEN
Disrupted-In-Schizophrenia-1 (DISC1), originally identified at the breakpoint of a chromosomal translocation that is linked to a rare familial schizophrenia, has been genetically implicated in schizophrenia in other populations. Schizophrenia involves subtle cytoarchitectural abnormalities that arise during neurodevelopment, but the underlying molecular mechanisms are unclear. Here, we demonstrate that DISC1 is a component of the microtubule-associated dynein motor complex and is essential for maintaining the complex at the centrosome, hence contributing to normal microtubular dynamics. Carboxy-terminal-truncated mutant DISC1 (mutDISC1), which results from a chromosomal translocation, functions in a dominant-negative manner by redistributing wild-type DISC1 through self-association and by dissociating the DISC1-dynein complex from the centrosome. Consequently, either depletion of endogenous DISC1 or expression of mutDISC1 impairs neurite outgrowth in vitro and proper development of the cerebral cortex in vivo. These results indicate that DISC1 is involved in cerebral cortex development, and suggest that loss of DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Mutación , Proteínas del Tejido Nervioso/fisiología , Esquizofrenia/genética , Animales , Células COS , Centrosoma/metabolismo , Corteza Cerebral/fisiopatología , Chlorocebus aethiops , Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas del Tejido Nervioso/genética , Neuritas/patología , Células PC12 , Ratas , Esquizofrenia/etiología , TransfecciónRESUMEN
The mammalian neocortex has a 6-layered cytoarchitecture, where early- and late-born neurons are positioned deeply and superficially, respectively. Inverted lamination has been observed in mice defective in the Reelin/Disabled-1 (Dab1) pathway. Considering that Dab1-deficient superficial layer neurons can migrate into the Dab1 +/+ cortical plate and that Dab1 is thought to function cell-autonomously, it is unclear why superficial layer neurons are positioned below deep layer neurons in Reelin/Dab1-deficient mice. Here, we reconfirmed that Dab1 -/- superficial layer neurons enter the cortical plate using in utero electroporation on embryonic day (E) 14.5 Dab1-floxed mice. Electroporation in E12.5 Dab1-floxed mice reconfirmed that many deep layer neurons were mispositioned below the subplate. We also found an accumulation of Dab1-deficient superficial layer neurons below the cortical plate in many of these brains, in which deep layer neurons below the subplate showed high cell density. These phenotypes were rescued by decreasing the knockout probability and by expressing Dab1 in deep layer neurons. These observations suggest that cell-dense Dab1 -/- deep layer neurons prevent Dab1 -/- superficial layer neurons from entering the cortical plate. This reflects a non-cell-autonomous function of Dab1 and may explain the preplate splitting failure and outside-in lamination observed in Reelin/Dab1-deficient mice.
Asunto(s)
Neocórtex , Proteínas del Tejido Nervioso , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Electroporación , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Mamíferos , Ratones , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Proteína ReelinaRESUMEN
Neurons in the developing mammalian neocortex form the cortical plate (CP) in an "inside-out" manner; that is, earlier-born neurons form the deeper layers, whereas later-born neurons migrate past the existing layers and form the more superficial layers. Reelin, a glycoprotein secreted by Cajal-Retzius neurons in the marginal zone (MZ), is crucial for this "inside-out" layering, because the layers are inverted in the Reelin-deficient mouse, reeler (Reln(rl)). Even though more than a decade has passed since the discovery of reelin, the biological effect of Reelin on individual migrating neurons remains unclear. In addition, although the MZ is missing in the reeler cortex, it is unknown whether Reelin directly regulates the development of the cell-body-sparse MZ. To address these issues, we expressed Reelin ectopically in the developing mouse cortex, and the results showed that Reelin caused the leading processes of migrating neurons to assemble in the Reelin-rich region, which in turn induced their cell bodies to form cellular aggregates around Reelin. Interestingly, the ectopic Reelin-rich region became cell-body-sparse and dendrite-rich, resembling the MZ, and the late-born neurons migrated past their predecessors toward the central Reelin-rich region within the aggregates, resulting in a birthdate-dependent "inside-out" alignment even ectopically. Reelin receptors and intracellular adaptor protein Dab1 were found to be necessary for formation of the aggregates. The above findings indicate that Reelin signaling is capable of inducing the formation of the dendrite-rich, cell-body-sparse MZ and a birthdate-dependent "inside-out" alignment of neurons independently of other factors/structures near the MZ.