Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Haemophilia ; 26(5): 826-833, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32700411

RESUMEN

BACKGROUND: Factor V (FV) deficiency is a monogenic inherited coagulation disorder considered to be an ideal indication for gene therapy. To investigate the possibility of therapeutic application of genome editing, we generated induced pluripotent stem cells (iPSCs) from a FV-deficient patient and repaired the mutation of factor V gene (F5) using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9). METHODS: The patient's peripheral blood mononuclear cells were reprogrammed for iPSCs. The targeting vector was designed with homology arms against F5 containing the corrected sequence. Cas9 ribonucleoprotein (RNP) complex and targeting vector were electroporated into iPSCs. Gene-edited iPSCs were differentiated into hepatocyte-like cells (HLCs). RESULTS: The mutation of F5 in patient-derived iPSCs was repaired by CRISPR/Cas9. In concentrated culture supernatants of patient-derived iPS-HLCs, neither FV antigen nor activity was detected, while in those of gene-corrected iPS-HLCs, FV antigen and specific activity were 67.0 ± 13.1 ng/mL and 173.2 ± 41.1 U/mg, respectively. CONCLUSIONS: We successfully repaired the mutation of F5 using the CRISPR/Cas9 and confirmed the recovery of FV activity with gene-corrected iPS-HLCs. Gene-edited iPSCs are promising for elucidating the pathophysiology as well as for a modality of gene therapy.


Asunto(s)
Deficiencia del Factor V/genética , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Femenino , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA