Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Biol ; 433(8): 166838, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539876

RESUMEN

Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Antineoplásicos/farmacología , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ib/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Descubrimiento de Drogas , Humanos , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Alineación de Secuencia , Transducción de Señal , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Structure ; 21(7): 1085-96, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823327

RESUMEN

Viral fusion proteins undergo dramatic conformational transitions during membrane fusion. For viruses that enter through the endosome, these conformational rearrangements are typically pH sensitive. Here, we provide a comprehensive review of the molecular interactions that govern pH-dependent rearrangements and introduce a paradigm for electrostatic residue pairings that regulate progress through the viral fusion coordinate. Analysis of structural data demonstrates a significant role for side-chain protonation in triggering conformational change. To characterize this behavior, we identify two distinct residue pairings, which we define as Histidine-Cation (HisCat) and Anion-Anion (AniAni) interactions. These side-chain pairings destabilize a particular conformation via electrostatic repulsion through side-chain protonation. Furthermore, two energetic control mechanisms, thermodynamic and kinetic, regulate these structural transitions. This review expands on the current literature by identification of these residue clusters, discussion of data demonstrating their function, and speculation of how these residue pairings contribute to the energetic controls.


Asunto(s)
Hemaglutininas Virales/química , Proteínas Virales de Fusión/química , Animales , Filoviridae/fisiología , Interacciones Huésped-Patógeno , Humanos , Concentración de Iones de Hidrógeno , Virus de la Influenza A/fisiología , Modelos Moleculares , Estructura Secundaria de Proteína , Termodinámica , Vesiculovirus/fisiología , Internalización del Virus
3.
PLoS One ; 6(6): e20872, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698112

RESUMEN

BACKGROUND: Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders. METHODOLOGY: Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space. CONCLUSIONS AND SIGNIFICANCE: This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.


Asunto(s)
Proteínas/metabolismo , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA