Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Cell Physiol ; 238(3): 566-581, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715607

RESUMEN

Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-ß signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6-19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6-19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.


Asunto(s)
Huesos , Regulación hacia Abajo , Serina Peptidasa A1 que Requiere Temperaturas Altas , Osteoporosis , Transducción de Señal , Proteína Smad1 , Animales , Femenino , Masculino , Ratones , Huesos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Ratones Noqueados , Osteoblastos/metabolismo , Osteocitos/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Osteoporosis/prevención & control , Proteína Smad1/metabolismo
2.
Arch Biochem Biophys ; 750: 109821, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979903

RESUMEN

The metastases of breast cancer to bone often cause osteolytic lesions not only by stimulating osteoclasts to resorb the bone but also by inhibiting osteoblasts from bone formation. Although tumor cell-derived extracellular vesicles (EVs) promote osteoclast differentiation and bone resorption, their roles in osteoblast differentiation and functions have not been elucidated. In this study, we investigated the effects of breast cancer cell-derived EVs on osteoblast differentiation and functions in vitro. We found that upon osteogenic induction, 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) were inhibited matrix mineralization of ST2 mouse bone marrow stromal cells. Temporal expression analysis of osteoblast marker genes, including runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), collagen type I (Col1a1), bone sialoprotein (Bsp), and osteocalcin (Bglap) revealed that 4T1-EVs decreased their expression during the late stage of osteoblast differentiation. Elevated levels of c-Jun N-terminal kinase (JNK) phosphorylation, upon osteogenic induction, were diminished by 4T1-EVs, significantly. In contrast, the nullification of reduced JNK phosphorylation by anisomycin, a potent JNK activator, increased the expression levels of osteoblast differentiation markers. Overall, our data indicated that 4T1-EVs affect osteoblast maturation, at least partially, through the regulation of JNK activity, which provides novel insights into the pathological impact of osteolytic bone metastasis and the role of EVs in osteoblast differentiation.


Asunto(s)
Neoplasias Óseas , Vesículas Extracelulares , Animales , Ratones , Huesos , Diferenciación Celular , Osteoblastos , Osteogénesis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
3.
J Immunol ; 206(12): 3053-3063, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34078710

RESUMEN

Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) is used to treat systemic lupus erythematosus (SLE)-like disorders in MRL/lpr mice. However, the mechanisms underlying the SHED-based therapy remain unclear. In this study, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) ameliorate the SLE-like phenotypes in MRL/lpr mice. SHED-EVs were isolated from the culture supernatant of SHED. SHED-EVs were treated with or without RNase and systemically administered to MRL/lpr mice. Subsequently, recipient bone marrow mesenchymal stem cells (BMMSCs) isolated from SHED-EV-administered MRL/lpr mice were examined for the in vitro and in vivo activity of hematopoietic niche formation and immunoregulation. Furthermore, the recipient BMMSCs were secondarily transplanted into MRL/lpr mice. The systemic SHED-EV infusion ameliorated the SLE-like phenotypes in MRL/lpr mice and improved the functions of recipient BMMSCs by rescuing Tert mRNA-associated telomerase activity, hematopoietic niche formation, and immunoregulation. The secondary transplantation of recipient BMMSCs recovered the immune condition and renal functions of MRL/lpr mice. The RNase treatment depleted RNAs, such as microRNAs, within SHED-EVs, and the RNA-depleted SHED-EVs attenuated the benefits of SHED-EVs in MRL/lpr mice. Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating SLE by targeting the telomerase activity of recipient BMMSCs.


Asunto(s)
Vesículas Extracelulares/inmunología , Lupus Eritematoso Sistémico/inmunología , Nicho de Células Madre/inmunología , Células Madre/inmunología , Telomerasa/inmunología , Diente Primario/inmunología , Animales , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Endogámicos NOD , Ratones SCID
4.
J Cell Physiol ; 237(10): 3912-3926, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908202

RESUMEN

The basic helix-loop-helix transcriptional factor, Bhlhe40 has been shown as a crucial regulator of immune response, tumorigenesis, and circadian rhythms. We identified Bhlhe40 as a possible regulator of osteoclast differentiation and function by shRNA library screening and found that Bhlhe40 was required for osteoclast activation. Bhlhe40 expression was induced in bone marrow macrophages (BMMs) by RANKL, whereas the expression of its homolog Bhlhe41 was decreased in osteoclastogenesis. µCT analysis of tibias revealed that Bhlhe40 knockout (KO) mice exhibited increased bone volume phenotype. Bone morphometric analysis showed that osteoclast number and bone resorption were decreased in Bhlhe40 KO mice, whereas significant differences in the osteoblast parameters were not seen between wild-type (WT) and Bhlhe40 KO mice. In vitro culture of BMMs showed that Bhlhe40 deficiency did not cause difference in osteoclast formation. In contrast, bone resorption activity of Bhlhe40 KO osteoclasts was markedly reduced in comparison with that of WT osteoclasts. Analysis of potential target genes of Bhlhe40 using data-mining platform ChIP-Atlas (http://chip-atlas.org) revealed that predicted target genes of Bhlhe40 were related to proton transport and intracellular vesicle acidification. We then analyzed the expression of proton pump, the vacuolar (V)-ATPases which are responsible for bone resorption. The expression of V-ATPases V1c1 and V0a3 was suppressed in Bhlhe40 KO osteoclasts. In addition, Lysosensor yellow/blue DND 160 staining demonstrated that vesicular acidification was attenuated in vesicles of Bhlhe40 KO osteoclasts. Furthermore, analysis with pH-sensitive fluorescent probe showed that proton secretion was markedly suppressed in Bhlhe40 KO osteoclasts compared to that in WT osteoclasts. Our findings suggest that Bhlhe40 plays a novel important role in the regulation of acid production in osteoclastic bone resorption.


Asunto(s)
Resorción Ósea , Osteoclastos , Adenosina Trifosfatasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Resorción Ósea/metabolismo , Diferenciación Celular , Colorantes Fluorescentes/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Osteoclastos/metabolismo , Bombas de Protones/metabolismo , Protones , Ligando RANK/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo
5.
Lab Invest ; 102(9): 1000-1010, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35474350

RESUMEN

RANKL induces NFATc1, a key transcriptional factor to induce osteoclast-specific genes such as cathepsin K, whereas transcriptional control of osteoclast survival is not fully understood. Leukemia/lymphoma-related factor (LRF) in mouse and osteoclast zinc finger protein (OCZF) in rat are zinc finger and BTB domain-containing protein (zBTB) family of transcriptional regulators, and are critical regulators of hematopoiesis. We have previously shown that differentiation and survival were enhanced in osteoclasts from OCZF-Transgenic (Tg) mice. In the present study, we show a possible mechanism of osteoclast survival regulated by LRF/OCZF and the role of OCZF overexpression in pathological bone loss. In the in vitro cultures, LRF was highly colocalized with NFATc1 in cells of early stage in osteoclastogenesis, but only LRF expression persisted after differentiation into mature osteoclasts. LRF expression was further enhanced in resorbing osteoclasts formed on dentin slices. Osteoclast survival inhibitor such as alendronate, a bisphosphonate reduced LRF expression. Micro CT evaluation revealed that femurs of OCZF-Tg mice showed significantly lower bone volume compared to that of WT mice. Furthermore, OCZF overexpression markedly promoted bone loss in ovariectomy-induced osteolytic mouse model. The expression of anti-apoptotic Bcl-xl mRNA, which is formed by alternative splicing, was enhanced in the cultures in which osteoclasts are formed from OCZF-Tg mice. In contrast, the expression of pro-apoptotic Bcl-xs mRNA was lost in the culture derived from OCZF-Tg mice. We found that the expression levels of RNA binding splicing regulator, Src substrate associated in mitosis of 68 kDa (Sam68) protein were markedly decreased in OCZF-Tg mice-derived osteoclasts. In addition, shRNA-mediated knockdown of Sam68 expression increased the expression of Bcl-xl mRNA, suggesting that SAM68 regulates the expression of Bcl-xl. These results indicate that OCZF overexpression reduces protein levels of Sam68, thereby promotes osteoclast survival, and suggest that LRF/OCZF is a promising target for regulating pathological bone loss.


Asunto(s)
Resorción Ósea , Leucemia , Linfoma , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proteínas de Unión al ADN , Femenino , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC , Osteoclastos , Ligando RANK , ARN Mensajero , Proteínas de Unión al ARN , Ratas , Proteínas Represoras , Factores de Transcripción , Dedos de Zinc
6.
Cancer Sci ; 113(12): 4219-4229, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36053115

RESUMEN

Aberrant osteoclast formation and activation are the hallmarks of osteolytic metastasis. Extracellular vesicles (EVs), released from bone metastatic tumor cells, play a pivotal role in the progression of osteolytic lesions. However, the mechanisms through which tumor cell-derived EVs regulate osteoclast differentiation and function have not been fully elucidated. In this study, we found that 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) are taken up by mouse bone marrow macrophages to facilitate osteoclastogenesis. Furthermore, treatment of mature osteoclasts with 4T1-EVs promoted bone resorption, which was accompanied by enhanced survival of mature osteoclasts through the negative regulation of caspase-3. By comparing the miRNA content in 4T1-EVs with that in 67NR nonmetastatic mouse mammary tumor cell-derived EVs (67NR-EVs), miR-92a-3p was identified as one of the most enriched miRNAs in 4T1-EVs, and its transfer into mature osteoclasts significantly reduced apoptosis. Bioinformatic and Western blot analyses revealed that miR-92a-3p directly targeted phosphatase and tensin homolog (PTEN) in mature osteoclasts, resulting in increased levels of phospho-Akt. Our findings provide novel insights into the EV-mediated regulation of osteoclast survival through the transfer of miR-92a-3p, which enhances mature osteoclast survival via the Akt survival signaling pathway, thus promoting bone resorption.


Asunto(s)
Resorción Ósea , Vesículas Extracelulares , MicroARNs , Osteoclastos , Animales , Ratones , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal
7.
FASEB J ; 35(2): e21281, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33484199

RESUMEN

Osteoclast bone resorption activity is critically regulated to maintain bone homeostasis. Osteoclasts resorb bone by producing protons and acid hydrolase via lysosomal secretion, however, a detailed mechanism remains elusive. PMEPA1 is a vesicular membrane protein, which binds to the NEDD4 family member of ubiquitin ligases. We have previously reported that Pmepa1 is highly expressed in bone resorbing osteoclasts, and regulates bone resorption. Here, we investigated the mechanism of bone resorption regulated by PMEPA1. Mutant mice lacking NEDD4-binding domains of PMEPA1 displayed enhanced bone volume, and reduced bone resorption activity in comparison with those of WT mice. Analysis with pH-sensitive fluorescence probe revealed that proton secretion from osteoclasts significantly decreased in Pmepa1 mutant osteoclasts. Immunofluorescence analysis revealed that PMEPA1 was colocalized with NEDD4, V0A3, and V0D2 subunits of vacuolar ATPase, which regulate the proton production of osteoclasts. In addition, Nedd4 knockdown reduced bone resorption and proton secretion of osteoclasts. Furthermore, Pmepa1 mutation and Nedd4 knockdown altered the cytoplasmic distribution of components of V-ATPase and expression of autophagy-related proteins, suggesting that lysosomal secretion is affected. Collectively, these findings indicate that PMEPA1 controls proton secretion from osteoclasts via NEDD4 by regulating vesicular trafficking, and NEDD4 is an important regulator of bone resorption.


Asunto(s)
Resorción Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Osteoclastos/metabolismo , Protones , Animales , Autofagia , Sitios de Unión , Células Cultivadas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Unión Proteica , Transporte de Proteínas , Vesículas Transportadoras/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
8.
Lab Invest ; 101(12): 1571-1584, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537825

RESUMEN

Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Nanotubos/ultraestructura , Osteogénesis , Animales , Fusión Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas Endogámicas Lew
9.
Lab Invest ; 101(11): 1449-1457, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34611305

RESUMEN

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.


Asunto(s)
Huesos/citología , Calcitonina/metabolismo , Diferenciación Celular , Osteogénesis , Receptores de Adrenomedulina/metabolismo , Animales , Animales Recién Nacidos , Huesos/irrigación sanguínea , Ratas Sprague-Dawley
10.
Lab Invest ; 101(11): 1475-1483, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504305

RESUMEN

Oral malignant melanoma, which frequently invades the hard palate or maxillary bone, is extremely rare and has a poor prognosis. Bone morphogenetic protein (BMP) is abundantly expressed in bone matrix and is highly expressed in malignant melanoma, inducing an aggressive phenotype. We examined the role of BMP signaling in the acquisition of an aggressive phenotype in melanoma cells in vitro and in vivo. In five cases, immunohistochemistry indicated the phosphorylation of Smad1/5 (p-Smad1/5) in the nuclei of melanoma cells. In the B16 mouse and A2058 human melanoma cell lines, BMP2, BMP4, or BMP7 induces morphological changes accompanied by the downregulation of E-cadherin, and the upregulation of N-cadherin and Snail, markers of epithelial-mesenchymal transition (EMT). BMP2 also stimulates cell invasion by increasing matrix metalloproteinase activity in B16 cells. These effects were canceled by the addition of LDN193189, a specific inhibitor of Smad1/5 signaling. In vivo, the injection of B16 cells expressing constitutively activated ALK3 enhanced zygoma destruction in comparison to empty B16 cells by increasing osteoclast numbers. These results suggest that the activation of BMP signaling induces EMT, thus driving the acquisition of an aggressive phenotype in malignant melanoma.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Óseas/secundario , Melanoma/secundario , Neoplasias de la Boca/patología , Proteínas Smad Reguladas por Receptores/metabolismo , Animales , Neoplasias Óseas/metabolismo , Huesos/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Masculino , Melanoma/metabolismo , Ratones , Neoplasias de la Boca/metabolismo , Invasividad Neoplásica , Transducción de Señal
11.
Int Immunol ; 32(2): 89-104, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31713625

RESUMEN

Staphylococcus aureus is a main pathogen of osteomyelitis and protein A is a virulence factor with high affinity for IgG. In this study, we investigated whether S. aureus affects the differentiation and bone resorption of osteoclasts through the IgG-binding capacity of protein A. Staphylococcus aureus pre-treated with serum or IgG showed marked enhancement in osteoclastogenesis and bone resorption compared to non-treated S. aureus or a protein A-deficient mutant. Blocking of the Fc receptor and deletion of the Fcγ receptor gene in osteoclast precursor cells showed that enhanced osteoclastogenesis stimulated by S. aureus IgG immune complexes (ICs) was mediated by the Fc receptor on osteoclast precursor cells. In addition, osteoclastogenesis stimulated by S. aureus ICs but not the protein A-deficient mutant was markedly reduced in osteoclast precursor cells of Myd88-knockout mice. Moreover, NFATc1, Syk and NF-κB signals were necessary for osteoclastogenesis stimulated by S. aureus ICs. The results suggest the contribution of a of Toll-like receptor 2 (TLR2)-Myd88 signal to the activity of S. aureus ICs. We further examined the expression of pro-inflammatory cytokines that is known to be enhanced by FcγR-TLR cross-talk. Osteoclasts induced by S. aureus ICs showed higher expression of TNF-α and IL-1ß, and marked stimulation of proton secretion of osteoclasts activated by pro-inflammatory cytokines. Finally, injection of S. aureus, but not the protein A-deficient mutant, exacerbated bone loss in implantation and intra-peritoneal administration mouse models. Our results provide a novel mechanistic aspect of bone loss induced by S. aureus in which ICs and both Fc receptors and TLR pathways are involved.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Diferenciación Celular , Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Proteína Estafilocócica A/inmunología , Staphylococcus aureus/inmunología , Receptor Toll-Like 2/inmunología , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/inmunología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/inmunología , Osteogénesis/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Ligando RANK/farmacología , Receptores Fc/deficiencia , Receptores Fc/genética , Proteína Estafilocócica A/genética , Staphylococcus aureus/citología , Ácidos Teicoicos/farmacología
12.
FASEB J ; 33(3): 4365-4375, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557043

RESUMEN

Osteoclasts derived from hematopoietic cells are activated on bone surface. To resorb bone, osteoclasts release acid and lysosome acid hydrolase via membrane transport. Prostate transmembrane protein androgen induced 1 (Pmepa1) is a type I transmembrane protein that regulates proliferation, migration, and metastasis of cancer cells. Because recent reports showed that Pmepa1 is involved in membrane transport in cancer cells, we investigated the role of Pmepa1 in osteoclast function. Pmepa1 expression was barely detected in osteoclasts formed on plastic surfaces in vitro, but was markedly increased in activated osteoclasts formed on calcified matrix. Inhibitors of bone resorption, such as alendronate, bafilomycin A1, and the PI3K inhibitor LY294002, suppressed the expression of Pmepa1 in osteoclasts. Knockdown of Pmepa1 expression impaired bone resorption activity and inhibited formation of a ring-like, actin-rich podosome belt that is essential for osteoclast function. Pmepa1 protein localized to lysosomes in osteoclasts. In addition, in sites of bone destruction observed in rats with adjuvant-induced arthritis, a marked high level of Pmepa1 expression was associated with the osteoclasts' resorbing bone. Our results suggest that Pmepa1 is a critical regulator of bone resorption and is a promising marker for activated osteoclasts and a potential therapeutic target in pathologic bone destruction.-Xu, X., Hirata, H., Shiraki, M., Kamohara, A., Nishioka, K., Miyamoto, H., Kukita, T., Kukita, A. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption.


Asunto(s)
Resorción Ósea/metabolismo , Proteínas de la Membrana/fisiología , Osteoclastos/metabolismo , Animales , Artritis Experimental/metabolismo , Calcimicina/farmacología , Adhesión Celular , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Células Cultivadas , Cromonas/farmacología , Dentina , Lisosomas/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Ubiquitina-Proteína Ligasas Nedd4/biosíntesis , Ubiquitina-Proteína Ligasas Nedd4/genética , Osteopontina/farmacología , Plásticos , Podosomas/metabolismo , Ligando RANK/farmacología , Ratas Endogámicas Lew , Factor de Crecimiento Transformador beta/farmacología
13.
FASEB J ; 33(8): 8836-8852, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31067083

RESUMEN

Nuclear protein 1 (NUPR1) is a multifunctional stress-induced protein involved in regulating tumorigenesis, apoptosis, and autophagy. Bone homeostasis is maintained by bone-resorbing osteoclasts and bone-forming osteoblasts and osteocytes. We aimed to determine the role of NUPR1 in bone metabolism. Using microcomputed tomography, we found that mice lacking Nupr1 exhibited increased bone volume. Histologic analysis showed that Nupr1 deficiency decreased osteoclast numbers but increased osteoblast numbers and osteoid formation. In vitro culture of bone marrow macrophages showed that receptor activator of NF-κB ligand-induced osteoclastogenesis was down-regulated in Nupr1-deficient mice. In contrast, primary osteoblasts from Nupr1-deficient mice revealed that proliferation of osteoblasts and expression of bone matrix proteins were markedly enhanced. In addition, expression of autophagy-related genes, formation of autophagosomes, and cell survival were up-regulated in Nupr1-deficient osteoblasts. In contract, deletion of Nupr1 reduced the formation of osteocyte cellular projection, which is an indicator of mature osteocytes. Importantly, we found that the expression of sclerostin (Sost), an inhibitor of bone formation, was down-regulated in the osteoblasts and osteocytes of Nupr1-deficient mice. Conversely, Nupr1 overexpression enhanced Sost expression in primary osteoblasts. Collectively, these results indicate that Nupr1 deficiency increases bone volume by attenuating production of Sost and osteoclastogenesis and enhancing differentiation of osteoblasts.-Shiraki, M., Xu, X., Iovanna, J. L., Kukita, T., Hirata, H., Kamohara, A., Kubota, Y., Miyamoto, H., Mawatari, M., Kukita, A. Deficiency of stress-associated gene Nupr1 increases bone volume by attenuating differentiation of osteoclasts and enhancing differentiation of osteoblasts.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Neoplasias/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoblastos/citología , Osteoclastos/citología
14.
J Immunol ; 200(1): 218-228, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141864

RESUMEN

As osteoclasts have the central roles in normal bone remodeling, it is ideal to regulate only the osteoclasts performing pathological bone destruction without affecting normal osteoclasts. Based on a hypothesis that pathological osteoclasts form under the pathological microenvironment of the bone tissues, we here set up optimum culture conditions to examine the entity of pathologically activated osteoclasts (PAOCs). Through searching various inflammatory cytokines and their combinations, we found the highest resorbing activity of osteoclasts when osteoclasts were formed in the presence of M-CSF, receptor activator of NF-κB ligand, and IL-1ß. We have postulated that these osteoclasts are PAOCs. Analysis using confocal laser microscopy revealed that PAOCs showed extremely high proton secretion detected by the acid-sensitive fluorescence probe Rh-PM and bone resorption activity compared with normal osteoclasts. PAOCs showed unique morphology bearing high thickness and high motility with motile cellular processes in comparison with normal osteoclasts. We further examined the expression of Kindlin-3 and Talin-1, essential molecules for activating integrin ß-chains. Although normal osteoclasts express high levels of Kindlin-3 and Talin-1, expression of these molecules was markedly suppressed in PAOCs, suggesting the abnormality in the adhesion property. When whole membrane surface of mature osteoclasts was biotinylated and analyzed, the IL-1ß-induced cell surface protein was detected. PAOCs could form a subpopulation of osteoclasts possibly different from normal osteoclasts. PAOC-specific molecules could be an ideal target for regulating pathological bone destruction.


Asunto(s)
Resorción Ósea/inmunología , Interleucina-1beta/inmunología , Osteoclastos/inmunología , Animales , Adhesión Celular , Células Cultivadas , Regulación hacia Abajo , Factor Estimulante de Colonias de Macrófagos/inmunología , Masculino , Ratones , Ratones Mutantes , Terapia Molecular Dirigida , Receptor Activador del Factor Nuclear kappa-B/inmunología , Talina/genética , Talina/metabolismo
15.
Lab Invest ; 99(6): 866-884, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30742099

RESUMEN

Bone remodeling is a continuous process characterized by highly coordinated cell-cell interactions in distinct multi-cellular units. Osteoclasts, which are specialized bone resorbing cells, play a central role in bone remodeling. Although the RANKL/RANK axis determines the gross number of osteoclasts present in bone tissue, detailed molecular events regulating bone remodeling related to osteoclast recruitment, initiation of bone remodeling, and coupling of bone resorption and bone formation are still ambiguous. We hypothesized that osteoblast-specific cell-surface molecules contribute to the molecular modulation of bone remodeling. Therefore, we searched for regulatory cell-surface molecules expressed on osteoblasts by use of B-cell hybridoma technology. We obtained a monoclonal antibody A7 (A7 MAb) highly specific to cells of osteoblast-lineage. Here we describe the expression pattern and possible role of A7 antigen specifically recognized by A7 MAb. In vitro, A7 antigen was expressed on cell-surface of osteoblasts and osteoblast-like bone marrow stromal cells. In vivo, A7 antigen was detected in a subset of bone surface osteoblasts and in osteocytes, with a typical cell membrane expression pattern. Tissue array analysis showed only a limited expression of A7 antigen in osteocytes close to the bone surface. Immunoblotting and immunoprecipitation analysis showed that A7 antigen is a lineage-specific cell-surface protein with an approximate molecular weight of 45 KDa. Cross-linking of cell-surface A7 antigen in cultures of osteoclastogenesis showed stimulation of osteoclast formation. Marked suppression of calcification in primary osteoblast cultures was observed when A7 antigen was cross-linked with anti-A7 antigen MAb, A7 MAb. These data suggest that A7 antigen regulates recruitment of osteoclasts and triggering of calcification. A7 antigen may be an important molecule involved in the precise regulation of bone remodeling.


Asunto(s)
Remodelación Ósea , Osteoblastos/inmunología , Osteogénesis , Animales , Anticuerpos Monoclonales/biosíntesis , Calcificación Fisiológica , Línea Celular Tumoral , Femenino , Masculino , Ratones Endogámicos BALB C , Ratas Sprague-Dawley
16.
J Cell Physiol ; 233(4): 3105-3118, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28802000

RESUMEN

Osteoclasts are multinucleated cells formed by fusion of preosteoclasts (POCs) derived from cells of the monocyte/macrophage lineage. We have reported a culture system that supports the formation of POCs from stroma-depleted rat bone marrow cells. Global gene expression analysis of this culture system identified genes highly expressed in POCs. Here, we have analyzed the expression and function of one of these highly expressed genes, prostate transmembrane protein androgen induced 1 (Pmepa1), a target of TGF-ß and binds Nedd4 ubiquitin ligase, which plays a role in intracellular trafficking. We show here that the expression of Pmepa1 was strongly induced by RANKL in mouse bone marrow macrophage and in the osteoclast precursor cell line RAW-D. The expression of Pmepa1 was increased at 24 hr of culture, but was decreased at 72 hr. Pmepa1 protein was localized to intracellular vesicle membrnane of mononuclear cells, some of which were cathepsin-K positive. RANKL-induced expression of Pmepa1 was significantly reduced by inhibitors of p38 MAPK signaling. Pmepa1 siRNA suppressed the formation of osteoclasts in RAW-D cells, and inhibited the expression of cathepsin K and c-fos but not RANK. In addition, inhibition of Pmepa1 expression reduced the surface expression of RANK in RAW-D cells induced by RANKL. These results demonstrate that Pmepa1 is induced by RANK-p38 MAPK pathway signaling, and upregulates cell surface expression of RANK, suggesting that Pmepa1 plays a role in osteoclastogenesis and osteoclast signaling.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interleucina-1beta/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ligando RANK/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factor de Crecimiento Transformador beta/farmacología
17.
Lab Invest ; 97(10): 1235-1244, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28581488

RESUMEN

Laminin-332 (Lm-332), a major basement membrane protein, has been shown to provide a niche for some stem cells. Here, we found that Lm-332 was expressed in osteoblasts, and is implicated in the regulation of osteoclast differentiation. Immunofluorescence analysis of laminin-ß3, a unique component of Lm-332, indicated specific expression of laminin-ß3 in osteoblast-like cells localized on bone surface. RT-PCR analysis confirmed that α3, ß3, and γ2 chains of Lm-332 were all expressed in primary osteoblasts prepared from mouse calvaria. Lm-332 markedly inhibited osteoclastogenesis induced by receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) when bone marrow-derived macrophages (BMMs) were cultured on Lm-332-coated plates. Lm-332 also blocked RANKL-induced activation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) and expression of NFATc1, c-Fos, and c-Jun. Lm-332 suppressed osteoclast differentiation while retaining macrophage phenotypes, including nonspecific esterase activity and gene expression of lysozyme and EGF-like module-containing mucin-like hormone receptor-like 1 (Emr1). Furthermore, the treatment of primary osteoblasts with osteoclastogenic factors dramatically suppressed expression of Lm-332. These findings suggest that Lm-332 produced by osteoblasts in bone tissues has a pivotal role in controlling normal bone remodeling through suppressing osteoclastogenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Microambiente Celular/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Animales , Huesos/citología , Huesos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Osteoblastos/citología , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7 , Kalinina
18.
Am J Pathol ; 186(9): 2317-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27393793

RESUMEN

Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state.


Asunto(s)
Diferenciación Celular/genética , Osteoclastos/citología , Osteogénesis/genética , ARN sin Sentido/biosíntesis , Proteínas WT1/biosíntesis , Animales , Northern Blotting , Línea Celular , Regulación de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Proteínas WT1/genética
19.
Cell Biol Int ; 39(6): 696-709, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25612314

RESUMEN

The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy.


Asunto(s)
Amilorida/farmacología , Anticuerpos Monoclonales/farmacología , Osteoclastos/metabolismo , Ligando RANK/farmacología , Intercambiadores de Sodio-Hidrógeno/inmunología , Fosfatasa Ácida/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Regulación de la Expresión Génica/efectos de los fármacos , Isoenzimas/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Interferencia de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Solubilidad , Fosfatasa Ácida Tartratorresistente
20.
Lab Invest ; 94(11): 1200-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25264706

RESUMEN

Galectins are a unique family of lectins bearing one or two carbohydrate recognition domains (CRDs) that have the ability to bind molecules with ß-galactoside-containing carbohydrates. It has been shown that galectins regulate not only cell growth and differentiation but also immune responses, as well as inflammation. Galectin-9, a tandem repeat type of galectin, was originally identified as a chemotactic factor for eosinophils, and is also involved in the regulatory process of inflammation. Here, we examined the involvement of galectin-9 and its receptor, T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3), in the control of osteoclastogenesis and inflammatory bone destruction. Expression of Tim-3 was detected in osteoclasts and its mononuclear precursors in vivo and in vitro. Galectin-9 markedly inhibited osteoclastogenesis as evaluated in osteoclast precursor cell line RAW-D cells and primary bone marrow cells of mice and rats. The inhibitory effects of galectin-9 on osteoclastogenesis was negated by the addition of ß-lactose, an antagonist for galectin binding, suggesting that the inhibitory effect of galectin-9 was mediated through CRD. When galectin-9 was injected into rats with adjuvant-induced arthritis, marked suppression of bone destruction was observed. Inflammatory bone destruction could be efficiently ameliorated by controlling the Tim-3/galectin-9 system in rheumatoid arthritis.


Asunto(s)
Artritis/complicaciones , Resorción Ósea/etiología , Galectinas/metabolismo , Osteoclastos/fisiología , Receptores de Superficie Celular/metabolismo , Animales , Artritis/inducido químicamente , Artritis/metabolismo , Resorción Ósea/metabolismo , Femenino , Humanos , Lactosa , Masculino , Ratones Endogámicos C57BL , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA