Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genes Dev ; 32(21-22): 1430-1442, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366903

RESUMEN

After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined (commitment). We investigated the chromatin basis for these developmental milestones in mouse endoderm, a tissue with recognizable rostro-caudal patterning and transcription factor (TF)-dependent interim plasticity. Foregut-specific enhancers are as accessible and active in early midgut as in foregut endoderm, and intestinal enhancers and identity are established only after ectopic cis-regulatory elements are decommissioned. Depletion of the intestinal TF CDX2 before this cis element transition stabilizes foregut enhancers, reinforces ectopic transcriptional programs, and hence imposes foregut identities on the midgut. Later in development, as the window of chromatin plasticity elapses, CDX2 depletion weakens intestinal, without strengthening foregut, enhancers. Thus, midgut endoderm is primed for heterologous cell fates, and TFs act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. Similar principles likely govern other fate commitments.


Asunto(s)
Endodermo/metabolismo , Elementos de Facilitación Genéticos , Mucosa Intestinal/metabolismo , Intestinos/embriología , Transcripción Genética , Animales , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Cromatina/metabolismo , Endodermo/embriología , Intestinos/anatomía & histología , Ratones
2.
Int J Cancer ; 151(11): 2043-2054, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932450

RESUMEN

Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Animales , Linfocitos T CD8-positivos , Humanos , Inhibidores de Puntos de Control Inmunológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Nivolumab/farmacología , Nivolumab/uso terapéutico , Receptores de Antígenos de Linfocitos T/genética
3.
Development ; 146(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30745430

RESUMEN

Lineage-restricted transcription factors, such as the intestine-specifying factor CDX2, often have dual requirements across developmental time. Embryonic loss of CDX2 triggers homeotic transformation of intestinal fate, whereas adult-onset loss compromises crucial physiological functions but preserves intestinal identity. It is unclear how such diverse requirements are executed across the developmental continuum. Using primary and engineered human tissues, mouse genetics, and a multi-omics approach, we demonstrate that divergent CDX2 loss-of-function phenotypes in embryonic versus adult intestines correspond to divergent CDX2 chromatin-binding profiles in embryonic versus adult stages. CDX2 binds and activates distinct target genes in developing versus adult mouse and human intestinal cells. We find that temporal shifts in chromatin accessibility correspond to these context-specific CDX2 activities. Thus, CDX2 is not sufficient to activate a mature intestinal program; rather, CDX2 responds to its environment, targeting stage-specific genes to contribute to either intestinal patterning or mature intestinal function. This study provides insights into the mechanisms through which lineage-specific regulatory factors achieve divergent functions over developmental time.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Animales , Factor de Transcripción CDX2/genética , Sistemas CRISPR-Cas , Diferenciación Celular , Linaje de la Célula , Femenino , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Mutación , Células Madre Pluripotentes/citología , Unión Proteica , Dominios Proteicos , Transactivadores/metabolismo
4.
BMC Genomics ; 22(1): 5, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407110

RESUMEN

BACKGROUND: Single-cell (sc) sequencing performs unbiased profiling of individual cells and enables evaluation of less prevalent cellular populations, often missed using bulk sequencing. However, the scale and the complexity of the sc datasets poses a great challenge in its utility and this problem is further exacerbated when working with larger datasets typically generated by consortium efforts. As the scale of single cell datasets continues to increase exponentially, there is an unmet technological need to develop database platforms that can evaluate key biological hypotheses by querying extensive single-cell datasets. Large single-cell datasets like Human Cell Atlas and COVID-19 cell atlas (collection of annotated sc datasets from various human organs) are excellent resources for profiling target genes involved in human diseases and disorders ranging from oncology, auto-immunity, as well as infectious diseases like COVID-19 caused by SARS-CoV-2 virus. SARS-CoV-2 infections have led to a worldwide pandemic with massive loss of lives, infections exceeding 7 million cases. The virus uses ACE2 and TMPRSS2 as key viral entry associated proteins expressed in human cells for infections. Evaluating the expression profile of key genes in large single-cell datasets can facilitate testing for diagnostics, therapeutics, and vaccine targets, as the world struggles to cope with the on-going spread of COVID-19 infections. MAIN BODY: In this manuscript we describe REVEAL: SingleCell, which enables storage, retrieval, and rapid query of single-cell datasets inclusive of millions of cells. The array native database described here enables selecting and analyzing cells across multiple studies. Cells can be selected using individual metadata tags, more complex hierarchical ontology filtering, and gene expression threshold ranges, including co-expression of multiple genes. The tags on selected cells can be further evaluated for testing biological hypotheses. One such example includes identifying the most prevalent cell type annotation tag on returned cells. We used REVEAL: SingleCell to evaluate the expression of key SARS-CoV-2 entry associated genes, and queried the current database (2.2 Million cells, 32 projects) to obtain the results in < 60 s. We highlighted cells expressing COVID-19 associated genes are expressed on multiple tissue types, thus in part explains the multi-organ involvement in infected patients observed worldwide during the on-going COVID-19 pandemic. CONCLUSION: In this paper, we introduce the REVEAL: SingleCell database that addresses immediate needs for SARS-CoV-2 research and has the potential to be used more broadly for many precision medicine applications. We used the REVEAL: SingleCell database as a reference to ask questions relevant to drug development and precision medicine regarding cell type and co-expression for genes that encode proteins necessary for SARS-CoV-2 to enter and reproduce in cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/prevención & control , Receptores Virales/genética , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Análisis de la Célula Individual/métodos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/virología , Células Cultivadas , Bases de Datos Genéticas , Epidemias , Perfilación de la Expresión Génica , Humanos , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus
5.
Development ; 143(20): 3711-3722, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802136

RESUMEN

During late gestation, villi extend into the intestinal lumen to dramatically increase the surface area of the intestinal epithelium, preparing the gut for the neonatal diet. Incomplete development of the intestine is the most common gastrointestinal complication in neonates, but the causes are unclear. We provide evidence in mice that Yin Yang 1 (Yy1) is crucial for intestinal villus development. YY1 loss in the developing endoderm had no apparent consequences until late gestation, after which the intestine differentiated poorly and exhibited severely stunted villi. Transcriptome analysis revealed that YY1 is required for mitochondrial gene expression, and ultrastructural analysis confirmed compromised mitochondrial integrity in the mutant intestine. We found increased oxidative phosphorylation gene expression at the onset of villus elongation, suggesting that aerobic respiration might function as a regulator of villus growth. Mitochondrial inhibitors blocked villus growth in a fashion similar to Yy1 loss, thus further linking oxidative phosphorylation with late-gestation intestinal development. Interestingly, we find that necrotizing enterocolitis patients also exhibit decreased expression of oxidative phosphorylation genes. Our study highlights the still unappreciated role of metabolic regulation during organogenesis, and suggests that it might contribute to neonatal gastrointestinal disorders.


Asunto(s)
Mucosa Intestinal/metabolismo , Intestinos/citología , Organogénesis/fisiología , Factor de Transcripción YY1/metabolismo , Aerobiosis/genética , Aerobiosis/fisiología , Animales , Western Blotting , Genotipo , Inmunohistoquímica , Masculino , Ratones , Organogénesis/genética , Fosforilación Oxidativa , Transcriptoma/genética , Factor de Transcripción YY1/genética
6.
Sci Rep ; 13(1): 3051, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810872

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is associated with tumor initiation, metastasis, and drug resistance. However, the mechanisms underlying these associations are largely unknown. We studied several tumor types to identify the source of EMT gene expression signals and a potential mechanism of resistance to immuno-oncology treatment. Across tumor types, EMT-related gene expression was strongly associated with expression of stroma-related genes. Based on RNA sequencing of multiple patient-derived xenograft models, EMT-related gene expression was enriched in the stroma versus parenchyma. EMT-related markers were predominantly expressed by cancer-associated fibroblasts (CAFs), cells of mesenchymal origin which produce a variety of matrix proteins and growth factors. Scores derived from a 3-gene CAF transcriptional signature (COL1A1, COL1A2, COL3A1) were sufficient to reproduce association between EMT-related markers and disease prognosis. Our results suggest that CAFs are the primary source of EMT signaling and have potential roles as biomarkers and targets for immuno-oncology therapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Microambiente Tumoral/genética , Colágeno Tipo I/metabolismo , Neoplasias/patología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Fibroblastos/metabolismo
7.
Nat Rev Drug Discov ; 22(6): 496-520, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37117846

RESUMEN

Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Humanos , Análisis de Secuencia de ARN , Genómica , Descubrimiento de Drogas , ARN/genética
8.
FASEB J ; 25(9): 3045-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21653192

RESUMEN

Nature has evolved effective cell adhesion mechanisms to deliver inflammatory cells to inflamed tissue; however, many culture-expanded therapeutic cells are incapable of targeting diseased tissues following systemic infusion, which represents a great challenge in cell therapy. Our aim was to develop simple approaches to program cell-cell interactions that would otherwise not exist toward cell targeting and understanding the complex biology of cell-cell interactions. We employed a chemistry approach to engineer P- or L-selectin binding nucleic acid aptamers onto mesenchymal stem cells (MSCs) to enable them to engage inflamed endothelial cells and leukocytes, respectively. We show for the first time that engineered cells with a single artificial adhesion ligand can recapitulate 3 critical cell interactions in the inflammatory cell adhesion cascade under dynamic flow conditions. Aptamer-engineered MSCs adhered on respective selectin surfaces under static conditions >10 times more efficiently than controls including scrambled-DNA modified MSCs. Significantly, engineered MSCs can be directly captured from the flow stream by selectin surfaces or selectin-expressing cells under flow conditions (≤2dyn/cm²). The simple chemistry approach and the versatility of aptamers permit the concept of engineered cell-cell interactions to be generically applicable for targeting cells to diseased tissues and elucidating the biology of cell-cell interactions.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Células Endoteliales/fisiología , Inflamación/metabolismo , Células Madre Mesenquimatosas/fisiología , Animales , Células Cultivadas , Selectina L/metabolismo , Selectina-P/metabolismo , Propiedades de Superficie
9.
Mater Today (Kidlington) ; 13(4): 14-21, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21857791

RESUMEN

Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1) targeting cells to desirable sites in cell therapy, 2) programming assembly of cells for tissue engineering, 3) bioimaging and sensing, and ultimately 4) manipulating cell biology.

10.
Cancer Res ; 78(17): 4878-4890, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986996

RESUMEN

The cell of origin of colon cancer is typically thought to be the resident somatic stem cells, which are immortal and escape the continual cellular turnover characteristic of the intestinal epithelium. However, recent studies have identified certain conditions in which differentiated cells can acquire stem-like properties and give rise to tumors. Defining the origins of tumors will inform cancer prevention efforts as well as cancer therapies, as cancers with distinct origins often respond differently to treatments. We report here a new condition in which tumors arise from the differentiated intestinal epithelium. Inactivation of the differentiation-promoting transcription factor SMAD4 in the intestinal epithelium was surprisingly well tolerated in the short term. However, after several months, adenomas developed with characteristics of activated WNT signaling. Simultaneous loss of SMAD4 and activation of the WNT pathway led to dedifferentiation and rapid adenoma formation in differentiated tissue. Transcriptional profiling revealed acquisition of stem cell characteristics, and colabeling indicated that cells expressing differentiated enterocyte markers entered the cell cycle and reexpressed stem cell genes upon simultaneous loss of SMAD4 and activation of the WNT pathway. These results indicate that SMAD4 functions to maintain differentiated enterocytes in the presence of oncogenic WNT signaling, thus preventing dedifferentiation and tumor formation in the differentiated intestinal epithelium.Significance: This work identifies a mechanism through which differentiated cells prevent tumor formation by suppressing oncogenic plasticity. Cancer Res; 78(17); 4878-90. ©2018 AACR.


Asunto(s)
Adenoma/genética , Diferenciación Celular/genética , Neoplasias del Colon/genética , Proteína Smad4/genética , Adenoma/patología , Animales , Carcinogénesis/genética , Desdiferenciación Celular/genética , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Enterocitos/metabolismo , Enterocitos/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Vía de Señalización Wnt/genética
11.
Nat Biotechnol ; 35(10): 936-939, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28854175

RESUMEN

We present a tool to measure gene and protein expression levels in single cells with DNA-labeled antibodies and droplet microfluidics. Using the RNA expression and protein sequencing assay (REAP-seq), we quantified proteins with 82 barcoded antibodies and >20,000 genes in a single workflow. We used REAP-seq to assess the costimulatory effects of a CD27 agonist on human CD8+ lymphocytes and to identify and characterize an unknown cell type.


Asunto(s)
Proteínas/metabolismo , Análisis de la Célula Individual/métodos , Linfocitos T CD4-Positivos/metabolismo , Humanos , Activación de Linfocitos/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN
12.
Cell Mol Gastroenterol Hepatol ; 2(5): 648-662.e8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28078320

RESUMEN

BACKGROUND & AIMS: The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS: We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS: We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS: Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.

13.
Mol Cell Biol ; 34(17): 3291-304, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24980432

RESUMEN

Transcriptional regulatory mechanisms likely contribute to the etiology of inflammatory bowel disease (IBD), as genetic variants associated with the disease are disproportionately found at regulatory elements. However, the transcription factors regulating colonic inflammation are unclear. To identify these transcription factors, we mapped epigenomic changes in the colonic epithelium upon inflammation. Epigenetic marks at transcriptional regulatory elements responded dynamically to inflammation and indicated a shift in epithelial transcriptional factor networks. Active enhancer chromatin structure at regulatory regions bound by the transcription factor hepatocyte nuclear factor 4α (HNF4A) was reduced during colitis. In agreement, upon an inflammatory stimulus, HNF4A was downregulated and showed a reduced ability to bind chromatin. Genetic variants that confer a predisposition to IBD map to HNF4A binding sites in the human colon cell line CaCo2, suggesting impaired HNF4A binding could underlie genetic susceptibility to IBD. Despite reduced HNF4A binding during inflammation, a temporal knockout model revealed HNF4A still actively protects against inflammatory phenotypes and promotes immune regulatory gene expression in the inflamed colonic epithelium. These findings highlight the potential for HNF4A agonists as IBD therapeutics.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Colitis/genética , Colitis/metabolismo , Redes Reguladoras de Genes , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Animales , Sitios de Unión/genética , Células CACO-2 , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Factor Nuclear 4 del Hepatocito/antagonistas & inhibidores , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Elementos Reguladores de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA