Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Respir Res ; 21(1): 100, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32354332

RESUMEN

INTRODUCTION: Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS: We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS: The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION: Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.


Asunto(s)
Caquexia/genética , Caquexia/metabolismo , Hemo/genética , Hemo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Anciano , Anciano de 80 o más Años , Caquexia/epidemiología , Estudios de Cohortes , Regulación hacia Abajo/fisiología , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo/métodos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
2.
Sci Rep ; 12(1): 3080, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197532

RESUMEN

Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-ß (TGFß) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFß1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFß1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFß1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.


Asunto(s)
Antifibróticos/farmacología , Biología Computacional/métodos , Proteínas de la Matriz Extracelular/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Indoles/farmacología , Piridonas/farmacología , Factor de Crecimiento Transformador beta/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antifibróticos/uso terapéutico , Cadherinas/genética , Cadherinas/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Indoles/uso terapéutico , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Piridonas/uso terapéutico , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Tensinas/genética , Tensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA