Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 468(7323): 553-6, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20981010

RESUMEN

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Asunto(s)
Biodiversidad , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Animales , Densidad de Población
2.
Mol Phylogenet Evol ; 86: 24-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25772799

RESUMEN

Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants.


Asunto(s)
Especiación Genética , Peronospora/clasificación , Filogenia , Teorema de Bayes , Beta vulgaris/microbiología , ADN de Hongos/genética , Funciones de Verosimilitud , Modelos Genéticos , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Spinacia oleracea/microbiología
3.
Ecology ; 95(7): 1907-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25163123

RESUMEN

Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.


Asunto(s)
Biodiversidad , Hongos/clasificación , Enfermedades de las Plantas/microbiología , Plantas/clasificación , Hongos/fisiología , Alemania , Plantas/microbiología
4.
MycoKeys ; 48: 1-40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30872942

RESUMEN

Species of rust fungi of the genus Milesina (Pucciniastraceae, Pucciniales) are distributed mainly in northern temperate regions. They host-alternate between needles of fir (Abies spp.) and fronds of ferns (species of Polypodiales). Milesina species are distinguished based on host taxonomy and urediniospore morphology. In this study, 12 species of Milesina from Europe were revised. Specimens were examined by light and scanning electron microscopy for urediniospore morphology with a focus on visualising germ pores (number, size and position) and echinulation. In addition, barcode loci (ITS, nad6, 28S) were used for species delimitation and for molecular phylogenetic analyses. Barcodes of 72 Milesina specimens were provided, including 11 of the 12 species. Whereas urediniospore morphology features were sufficient to distinguish all 12 Milesina species except for 2 (M.blechni and M.kriegeriana), ITS sequences separated only 4 of 11 species. Sequencing with 28S and nad6 did not improve species resolution. Phylogenetic analysis, however, revealed four phylogenetic groups within Milesina that also correlate with specific urediniospore characters (germ pore number and position and echinulation). These groups are proposed as new sections within Milesina (sections Milesina, Vogesiacae M. Scholler & Bubner, sect. nov., Scolopendriorum M. Scholler & Bubner, sect. nov. and Carpaticae M. Scholler & Bubner, sect. nov.). In addition, Milesinawoodwardiana Buchheit & M. Scholler, sp. nov. on Woodwardiaradicans, a member of the type section Milesina, is newly described. An identification key for European Milesina species, based on urediniospore features, is provided.

5.
Int J Hyg Environ Health ; 211(3-4): 299-307, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17719844

RESUMEN

In every field of activity where organic material is being handled, emissions of dust, gases, odor as well as bioaerosols are bound to arise. For this reason, waste management facilities or else agricultural enterprises are potential emission sources of bioaerosols. The dispersion of bioaerosols from waste treatment facilities and their health impacts continue to be the subject of numerous discussions. This article addresses organizational and engineering measures for the mitigation of bioaerosol emissions. The required scale of emission reduction and the choice of microbiological parameters have to be assessed with respect to location and facility type.


Asunto(s)
Aerosoles , Contaminación del Aire/prevención & control , Residuos Industriales/prevención & control , Administración de Residuos/métodos , Contaminantes Atmosféricos , Filtración/instrumentación , Filtración/métodos , Alemania , Administración de Residuos/legislación & jurisprudencia
6.
MycoKeys ; (41): 39-50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30344443

RESUMEN

There are 63 known species of Thecaphora (Glomosporiaceae, Ustilaginomycotina), a third of which occur on Asteraceae. These smut fungi produce yellowish-brown to reddish-brown masses of spore balls in specific, mostly regenerative, plant organs. A species of Thecaphora was collected in the flower heads of Anthemischia (Anthemideae, Asteraceae) on Rhodes Island, Greece, in 2015 and 2017, which represents the first smut record of a smut fungus on a host plant species in this tribe. Based on its distinctive morphology, host species and genetic divergence, this species is described as Thecaphoraanthemidis sp. nov. Molecular barcodes of the ITS region are provided for this and several other species of Thecaphora. A phylogenetic and morphological comparison to closely related species showed that Th.anthemidis differed from other species of Thecaphora. Thecaphoraanthemidis produced loose spore balls in the flower heads and peduncles of Anthemischia unlike other flower-infecting species.

7.
Mycol Res ; 112(Pt 2): 251-70, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18319146

RESUMEN

A chemotaxonomic evaluation using hplc profiling was undertaken to resolve the infrageneric and intergeneric affinities of over 150 strains of Xylariaceae. Daldinia placentiformis, Hypoxylon nicaraguense, H. polyporus, and Phylacia sagrana were found to contain 8-methoxy-1-naphthol, which is apparently absent in Annulohypoxylon, Hypoxylon, and related genera with bipartite stromata. D. placentiformis and other species of Daldinia and Entonaema produced this naphthol, 5-hydroxy-2-methylchromone, isosclerone derivatives, and 'AB-5046' phytotoxins. Phylacia sagrana differed from most Daldinia spp., except for D. caldariorum, by producing eutypine derivatives in addition to the above compounds. Indolylquinones were observed in H. nicaraguense and H. polyporus. Isosclerones were also identified in the A. multiforme complex, but Hypoxylon and other Annulohypoxylon and most Hypoxylon spp. studied Annulohypoxylon spp. contained 5-methylmellein as the major metabolite of their cultures. Based on the occurrence of the above metabolites, further mellein-type dihydroisocoumarins, teleomorphic and anamorphic Xylariaceae with Nodulisporium-like anamorphs ('Hypoxyloideae') were divided into various chemotypes. A comparison of their 5.8S/ITS nuc-rDNA sequences agreed in some important aspects with the above results: H. nicaraguense and H. polyporus appeared basal to a clade comprising Daldinia, Entonaema, and Ph. sagrana. The latter species appeared allied to D. caldariorum, but was distantly related to Pyrenomyxa morganii and Hypoxylon s. str.


Asunto(s)
ADN Ribosómico/genética , Xylariales/química , Xylariales/clasificación , Cromatografía Líquida de Alta Presión , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Fermentación , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Naftoles/análisis , Naftoles/metabolismo , Filogenia , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN , Xylariales/genética , Xylariales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA