Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39409028

RESUMEN

The evolutionary history of emperors, particularly in the Atlantic and Indo-West Pacific Oceans, remains largely unmapped. This study explores the maternal lineage evolution of Lethrinids by examining the complete mitogenome of Lethrinus atlanticus, which is endemic to the Eastern Atlantic Ocean. Utilizing advanced next-generation sequencing, we found that the mitogenome spans 16,789 base pairs and encompasses 37 genes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and an AT-rich control region (CR). Our analysis indicates a preference for AT base pairs in the L. atlanticus mitogenome (53.10%). Most PCGs begin with the ATG codon, except for COI, which starts with GTG. Relative synonymous codon usage reveals high frequencies for alanine, leucine, proline, serine, and threonine. The ratio of nonsynonymous to synonymous substitutions suggests strong negative selection across all PCGs in Lethrinus species. Most transfer RNAs exhibit typical cloverleaf structures, with the exception of tRNA-serine (GCT), which lacks a dihydrouracil stem. Comparative analysis of conserved sequence blocks across the CRs of three Lethrinus species shows notable differences in length and nucleotide composition. Phylogenetic analysis using concatenated PCGs clearly distinguishes all Lethrinus species, including L. atlanticus, and sheds light on the evolutionary relationships among Spariformes species. The estimated divergence time of approximately 20.67 million years between L. atlanticus and its Indo-West Pacific relatives provides insights into their historical separation and colonization during the late Oligocene. The distribution of Lethrinids may be influenced by ocean currents and ecological factors, potentially leading to their speciation across the Eastern Atlantic and Indo-West Pacific. This study enhances our understanding of the genetic diversity and phylogenetic relationships within Lethrinus species. Further exploration of other emperor fish mitogenomes and comprehensive genomic data could provide vital insights into their genetic makeup, evolutionary history, and environmental adaptability in marine ecosystems globally.


Asunto(s)
Genoma Mitocondrial , Filogenia , Animales , Océano Atlántico , ARN de Transferencia/genética , Evolución Molecular , Perciformes/genética , Perciformes/clasificación , ARN Ribosómico/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339100

RESUMEN

The global exploration of evolutionary trends in groupers, based on mitogenomes, is currently underway. This research extensively investigates the structure of and variations in Cephalopholis species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopholis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and exhibits a gene order analogous to that of the ancestral teleost's, featuring 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species. The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were <1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C. taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs, distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our understanding of evolutionary relationships among serranid groupers, emphasizing the significance of structural considerations in mitogenomic analyses.


Asunto(s)
Lubina , Genoma Mitocondrial , Animales , Filogenia , Lubina/genética , Teorema de Bayes , Composición de Base , ARN de Transferencia/genética , ARN Ribosómico/genética , Serina/genética
3.
Biochem Genet ; 60(4): 1177-1188, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34800202

RESUMEN

The complete mitogenome sequence of the Great Frigatebird, Fregata minor was sequenced for the first time in this study. The mitogenome (16,899 bp) comprises of 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes, and a control region (CR). The mitogenome was AT-rich (55.60%) with 11 overlapping and 18 intergenic spacer regions. Most of the PCGs were started by a typical ATG initiation codon except for cox1 and nad3. A maximum-likelihood phylogeny of concatenated PCGs resulted in a well-resolved phylogeny of all the species of Suliformes and illuminates the sister relationship of F. minor with F. magnificens. The present mitogenome-based phylogeny clearly enlightens the evolutionary position of Suliformes and Pelecaniformes species. Unique tandem repeats were identified in both F. minor and F. magnificens, which can be employed as a species-specific marker. To illuminate the population structure of this migratory seabirds, the present study advocate more sampling and the generation of additional molecular data to clarify their genetic diversity. The present study also rejects an earlier hypothesis on the mitochondrial gene order of Suliformes and corroborated the typical avian gene order in frigatebirds.


Asunto(s)
Genoma Mitocondrial , Animales , Aves/genética , Reordenamiento Génico , Filogenia , ARN Ribosómico/química , ARN Ribosómico/genética , ARN de Transferencia/química , ARN de Transferencia/genética
4.
Biology (Basel) ; 13(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39336094

RESUMEN

Climate change has severely impacted many species, causing rapid declines or extinctions within their essential ecological niches. This deterioration is expected to worsen, particularly in remote high-altitude regions like the Himalayas, which are home to diverse flora and fauna, including many mountainous ungulates. Unfortunately, many of these species lack adaptive strategies to cope with novel climatic conditions. The Red Goral (Naemorhedus baileyi) is a cliff-dwelling species classified as "Vulnerable" by the IUCN due to its small population and restricted range extent. This species has the most restricted range of all goral species, residing in the temperate mountains of northeastern India, northern Myanmar, and China. Given its restricted range and small population, this species is highly threatened by climate change and habitat disruptions, making habitat mapping and modeling crucial for effective conservation. This study employs an ensemble approach (BRT, GLM, MARS, and MaxEnt) in species distribution modeling to assess the distribution, habitat suitability, and connectivity of this species, addressing critical gaps in its understanding. The findings reveal deeply concerning trends, as the model identified only 21,363 km2 (13.01%) of the total IUCN extent as suitable habitat under current conditions. This limited extent is alarming, as it leaves the species with very little refuge to thrive. Furthermore, this situation is compounded by the fact that only around 22.29% of this identified suitable habitat falls within protected areas (PAs), further constraining the species' ability to survive in a protected landscape. The future projections paint even degraded scenarios, with a predicted decline of over 34% and excessive fragmentation in suitable habitat extent. In addition, the present study identifies precipitation seasonality and elevation as the primary contributing predictors to the distribution of this species. Furthermore, the study identifies nine designated transboundary PAs within the IUCN extent of the Red Goral and the connectivity among them to highlight the crucial role in supporting the species' survival over time. Moreover, the Dibang Wildlife Sanctuary (DWLS) and Hkakaborazi National Park are revealed as the PAs with the largest extent of suitable habitat in the present scenario. Furthermore, the highest mean connectivity was found between DWLS and Mehao Wildlife Sanctuary (0.0583), while the lowest connectivity was observed between Kamlang Wildlife Sanctuary and Namdapha National Park (0.0172). The study also suggests strategic management planning that is a vital foundation for future research and conservation initiatives, aiming to ensure the long-term survival of the species in its natural habitat.

5.
Ecol Evol ; 14(8): e70160, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145041

RESUMEN

The small mammalian fauna plays pivotal roles in ecosystem dynamics and as crucial biodiversity indicators. However, recent research has raised concerns about the decline of mammalian species due to climate change. Consequently, significant attention is directed toward studying various big flagship mammalian species for conservation. However, small mammals such as the hog badgers (Mustelidae: Arctonyx) remain understudied regarding the impacts of climate change in Asia. The present study offers a comprehensive analysis of climate change effects on two mainland hog badger species, utilizing ensemble species distribution modeling. Findings reveal concerning outcomes, as only 52% of the IUCN extent is deemed suitable for the Great Hog Badger (Arctonyx collaris) and a mere 17% is ideal for the Northern Hog Badger (Arctonyx albogularis). Notably, projections suggest a potential reduction of over 26% in suitable areas for both species under future climate scenarios, with the most severe decline anticipated in the high-emission scenario of SSP585. These declines translate into evident habitat fragmentation, particularly impacting A. collaris, whose patches shrink substantially, contrasting with the relatively stable patches of A. albogularis. However, despite their differences, niche overlap analysis reveals an intriguing increase in overlap between the two species, indicating potential ecological shifts. The study underscores the importance of integrating climate change and habitat fragmentation considerations into conservation strategies, urging a reassessment of the IUCN status of A. albogularis. The insights gained from this research are crucial for improving protection measures by ensuring adequate legal safeguards and maintaining ecological corridors between viable habitat patches, which are essential for the conservation of hog badgers across mainland Asia. Furthermore, emphasizing the urgency of proactive efforts, particularly in countries with suitable habitats can help safeguard these small mammalian species and their ecosystems from the detrimental impacts of climate change.

6.
Biology (Basel) ; 13(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534467

RESUMEN

The hispid hare, Caprolagus hispidus, belonging to the family Leporidae is a small grassland mammal found in the southern foothills of the Himalayas, in India, Nepal, and Bhutan. Despite having an endangered status according to the IUCN Red List, it lacks studies on its distribution and is threatened by habitat loss and land cover changes. Thus, the present study attempted to assess the habitat suitability using the species distribution model approach for the first time and projected its future in response to climate change, habitat, and urbanization factors. The results revealed that out of the total geographical extent of 188,316 km2, only 11,374 km2 (6.03%) were identified as suitable habitat for this species. The results also revealed that habitat significantly declined across its range (>60%) under certain climate change scenarios. Moreover, in the present climate scenario protected areas such as Shuklaphanta National Park (0.837) in Nepal exhibited the highest mean extent of habitat whereas, in India, Dibru-Saikhowa National Park (0.631) is found to be the most suitable habitat. Notably, two protected areas in Uttarakhand, India, specifically Corbett National Park (0.530) and Sonanandi Wildlife Sanctuary (0.423), have also demonstrated suitable habitats for C. hispidus. Given that protected areas showing a future rise in habitat suitability might also be regarded as potential sites for species translocation, this study underscores the importance of implementing proactive conservation strategies to mitigate the adverse impacts of climate change on this species. It is essential to prioritize habitat restoration, focused protection measures, and further species-level ecological exploration to address these challenges effectively. Furthermore, fostering transboundary collaboration and coordinated conservation actions between nations is crucial to safeguarding the long-term survival of the species throughout its distribution range.

7.
Heliyon ; 10(9): e30273, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694028

RESUMEN

The endangered and poorly known Swamp Grass-babbler, Laticilla cinerascens (Passeriformes: Pellorneidae), confronts critical threats and vulnerability due to its specific habitat requirements and restricted populations in the northeastern region of the Indian Subcontinent. This study investigates the distribution of the species, habitat quality, geometry and shape complexity of connectivity among the protected areas (PAs), and responses to climate change in Northeast India under different climate change pathways by utilizing ensemble distribution models, and ecological metrics. From the total distribution extent (1,42,000 km2), approximately 9366 km2 (6.59 %) is identified as the suitable habitat for this threatened species. Historically centered around Dibru Saikhowa National Park (DSNP), the species faced a drastic decline due to anthropogenic activities and alteration in land use and lover cover. The study also reveals a significant decline in suitable habitat for L. cinerascens in future climate scenarios, with alarming reductions under SSP126 (>10 % in the timeframe 2041-2060 and > 30 % from 2061 to 2080), SSP245 (>90 % in both time periods), and SSP585 (>90 % in both timeframes) from the present scenario. At present, DSNP has the most suitable habitat within the distribution range but is projected to decline (>90 %) under more severe climate change scenarios, as observed in other PAs. Landscape fragmentation analysis indicates a shift in habitat geometry, highlighting the intricate impact of climate change. It predicts a substantial 343 % increase (in the SSP126) in small habitat patches in the future. Connectivity analysis among PAs shows a significant shift, with a decline exceeding 20 %. The analysis of shape complexity and connectivity geometry reveals a significant increase of over 220 % in the fragmentation of connectivity among PAs between 2061 and 2080 under the SSP585 climate change scenario compared to the present conditions. The study underscores the urgent need for conservation actions, emphasizing the complex interplay of climate change, habitat suitability, and fragmentation. Prioritizing PAs with suitable habitats and assessing their connectivity is crucial. Adaptive management strategies are essential to address ongoing environmental changes and safeguard biodiversity. Future research in critical areas is needed to establish long-term monitoring programs to lead/extend effective conservation strategies.

8.
Genes (Basel) ; 14(3)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36981035

RESUMEN

The Nicobar leaf-nosed Bat (Hipposideros nicobarulae) was described in the early 20th century; however, its systematic classification has been debated for over 100 years. This endangered and endemic species has achieved species status through morphological data in the last 10 years. However, the genetic information and phylogenetic relationships of H. nicobarulae remain neglected. The generated mitochondrial cytochrome b gene (mtCytb) sequences (438 bp) of H. nicobarulae contains 53.42-53.65% AT composition and 1.82% variable sites. The studied species, H. nicobarulae maintains an 8.1% to 22.6% genetic distance from other Hipposideros species. The genetic divergence estimated in this study is congruent with the concept of gene speciation in bats. The Bayesian and Maximum-Likelihood phylogenies clearly discriminated all Hipposideros species and showed a sister relationship between H. nicobarulae and H. cf. antricola. Current mtCytb-based investigations of H. nicobarulae have confirmed the species status at the molecular level. Further, the MaxEnt-based species distribution modelling illustrates the most suitable habitat of H. nicobarulae (294 km2), of which the majority (171 km2) is located on Great Nicobar Island. The present study suggests rigorous sampling across the range, taxonomic coverage, the generation of multiple molecular markers (mitochondrial and nuclear), as well as more ecological information, which will help in understanding population genetic structure, habitat suitability, and the implementation of appropriate conservation action plans for H. nicobarulae and other Hipposideros species.


Asunto(s)
Quirópteros , Animales , Quirópteros/genética , Filogenia , Teorema de Bayes , Mamíferos , Mitocondrias
9.
PeerJ ; 11: e15975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692114

RESUMEN

The spotted pond turtle (Geoclemys hamiltonii) is a threatened and less explored species endemic to Bangladesh, India, Nepal, and Pakistan. To infer structural variation and matrilineal phylogenetic interpretation, the present research decoded the mitogenome of G. hamiltonii (16,509 bp) using next-generation sequencing technology. The mitogenome comprises 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one AT-rich control region (CR) with similar strand symmetry in vertebrates. The ATG was identified as a start codon in most of the PCGs except Cytochrome oxidase subunit 1 (cox1), which started with the GTG codon. The non-coding CR of G. hamiltonii was determined to have a unique structure and variation in different domains and stem-loop secondary structure as compared with other Batagurinae species. The PCGs-based Bayesian phylogeny inferred strong monophyletic support for all Batagurinae species and confirmed the sister relationship of G. hamiltonii with Pangshura and Batagur taxa. We recommend generating more mitogenomic data for other Batagurinae species to confirm their population structure and evolutionary relationships. In addition, the present study aims to infer the habitat suitability and habitat quality of G. hamiltonii in its global distribution, both in the present and future climatic scenarios. We identify that only 58,542 km2 (7.16%) of the total range extent (817,341 km2) is suitable for this species, along with the fragmented habitats in both the eastern and western ranges. Comparative habitat quality assessment suggests the level of patch shape in the western range is higher (71.3%) compared to the eastern range. Our results suggest a massive decline of approximately 65.73% to 70.31% and 70.53% to 75.30% under ssp245 and ssp585 future scenarios, respectively, for the years between 2021-2040 and 2061-2080 compared with the current distribution. The present study indicates that proper conservation management requires greater attention to the causes and solutions to the fragmented distribution and safeguarding of this endangered species in the Indus, Ganges, and Brahmaputra (IGB) river basins.


Asunto(s)
Tortugas , Animales , Tortugas/genética , Filogenia , Teorema de Bayes , Reptiles , Evolución Biológica , ARN Ribosómico
10.
Biology (Basel) ; 12(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37887027

RESUMEN

The mitogenomic evolution of the Psettodes flatfishes is still poorly known from their range distribution in eastern Atlantic and Indo-West Pacific Oceans. The study delves into the matrilineal evolutionary pathway of these primitive flatfishes, with a specific focus on the complete mitogenome of the Psettodes belcheri species, as determined through next-generation sequencing. The mitogenome in question spans a length of 16,747 base pairs and comprises a total of 37 genes, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. Notably, the mitogenome of P. belcheri exhibits a bias towards AT base pairs, with a composition of 54.15%, mirroring a similar bias observed in its close relative, Psettodes erumei, which showcases percentages of 53.07% and 53.61%. Most of the protein-coding genes commence with an ATG initiation codon, except for Cytochrome c oxidase I (COI), which initiates with a GTG codon. Additionally, four protein-coding genes commence with a TAA termination codon, while seven others exhibit incomplete termination codons. Furthermore, two protein-coding genes, namely NAD1 and NAD6, terminate with AGG and TAG stop codons, respectively. In the mitogenome of P. belcheri, the majority of transfer RNAs demonstrate the classical cloverleaf secondary structures, except for tRNA-serine, which lacks a DHU stem. Comparative analysis of conserved blocks within the control regions of two Psettodidae species unveiled that the CSB-II block extended to a length of 51 base pairs, surpassing the other blocks and encompassing highly variable sites. A comprehensive phylogenetic analysis using mitochondrial genomes (13 concatenated PCGs) categorized various Pleuronectiformes species, highlighting the basal position of the Psettodidae family and showed monophyletic clustering of Psettodes species. The approximate divergence time (35-10 MYA) between P. belcheri and P. erumei was estimated, providing insights into their separation and colonization during the early Miocene. The TimeTree analysis also estimated the divergence of two suborders, Psettodoidei and Pleuronectoidei, during the late Paleocene to early Eocene (56.87 MYA). The distribution patterns of Psettodes flatfishes were influenced by ocean currents and environmental conditions, contributing to their ecological speciation. In the face of climate change and anthropogenic activities, the conservation implications of Psettodes flatfishes are emphasized, underscoring the need for regulated harvesting and adaptive management strategies to ensure their survival in changing marine ecosystems. Overall, this study contributes to understanding the evolutionary history, genetic diversity, and conservation needs of Psettodes flatfishes globally. However, the multifaceted exploration of mitogenome and larger-scale genomic data of Psettodes flatfish will provide invaluable insights into their genetic characterization, evolutionary history, environmental adaptation, and conservation in the eastern Atlantic and Indo-West Pacific Oceans.

11.
Genes (Basel) ; 14(7)2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37510398

RESUMEN

The Indian highland shrew, Suncus niger (Horsfield, 1851), is the least studied soricid species from its original range distribution in Southern India, with several systematics conundrums. Following its discovery in 1851, the species was synonymized with Suncus montanus (Kelaart, 1850) (endemic to Sri Lanka) and subsequently identified as a separate Indian population. However, the systematic status of S. niger from topotype specimens in Southern India has yet to be determined through an integrated approach. Both taxonomy and mitochondrial genetic data (Cytochrome b and 16S ribosomal RNA) were used to re-examine the systematics of S. niger. The mtCytb gene clearly distinguished topotypic S. niger from other Suncus species, with high genetic divergences varying from 8.49% to 26.29%. Further, the Bayesian and maximum likelihood topologies clearly segregated S. niger from other congeners and corroborated the sister relationship with S. stoliczkanus with expected divergence in the late Pliocene (2.62 MYA). The TimeTree analysis also exhibits a strong matrilineal affinity of S. dayi (endemic to India) toward the African species. The current study hypothesizes that the ancestor of the soricids evolved in Africa and that genetic lineages were subsequently shifted by plate tectonic events that subsequently colonized different continents as distinct species during the late Miocene (Tortonian) to the Holocene era. In addition to the new range expansion and elevation records of S. niger in the Central Western Ghats, we propose that additional sampling across its distribution, as well as the use of multiple genetic markers, may be useful in determining the genetic diversity and population structure of this endemic species. The present study also recommends that more molecular data on the Soricomorphs lineages, and estimates of their divergence times, will shed light on the evolution of these small mammals on Earth.


Asunto(s)
Eulipotyphla , Musarañas , Animales , Musarañas/genética , Filogenia , Niger , Teorema de Bayes , Biodiversidad , India
12.
Life (Basel) ; 13(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240713

RESUMEN

The airbreathing walking catfish (Clariidae: Clarias) comprises 32 species that are endemic to African freshwater systems. The species-level identification of this group is challenging due to their complex taxonomy and polymorphism. Prior to this study, the biological and ecological studies were restricted to a single species, Clarias gariepinus, resulting in a biased view of their genetic diversity in African waters. Here, we generated the 63-mitochondrial Cytochrome c oxidase subunit 1 (COI) gene sequences of Clarias camerunensis and Clarias gariepinus from the Nyong River in Cameroon. Both C. camerunensis and C. gariepinus species maintained adequate intra-species (2.7% and 2.31%) and inter-species (6.9% to 16.8% and 11.4% to 15.1%) genetic distances with other Clarias congeners distributed in African and Asian/Southeast Asian drainages. The mtCOI sequences revealed 13 and 20 unique haplotypes of C. camerunensis and C. gariepinus, respectively. The TCS networks revealed distinct haplotypes of C. camerunensis and shared haplotypes of C. gariepinus in African waters. The multiple species delimitation approaches (ABGD and PTP) revealed a total of 20 and 22 molecular operational taxonomic units (MOTUs), respectively. Among the two Clarias species examined, we found more than one MOTU in C. camerunensis, which is consistent with population structure and tree topology results. The phylogeny generated through Bayesian Inference analysis clearly separated C. camerunensis and C. gariepinus from other Clarias species with high posterior probability supports. The present study elucidates the occurrence of possible cryptic diversity and allopatric speciation of C. camerunensis in African drainages. Further, the present study confirms the reduced genetic diversity of C. gariepinus across its native and introduced range, which might have been induced by unscientific aquaculture practices. The study recommends a similar approach to the same and related species from different river basins to illuminate the true diversity of Clarias species in Africa and other countries.

13.
Life (Basel) ; 13(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36836839

RESUMEN

The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries.

14.
Genes (Basel) ; 14(8)2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37628642

RESUMEN

The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Camerún , Teorema de Bayes , Codón de Terminación , Filogenia , Proteínas del Grupo Polycomb
15.
Sci Rep ; 12(1): 877, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042947

RESUMEN

The Nicobar treeshrew (Tupaia nicobarica) is an endangered small mammal endemic to the Nicobar Island of the Andaman Sea, India regarded as an alternative experimental animal model in biomedical research. The present study aimed to assemble the first mitochondrial genome of T. nicobarica to elucidate its phylogenetic position with respect to other Scandentians. The structure and variation of the novel mitochondrial genome were analyzed and compared with other Scandentians. The complete mitogenome (17,164 bp) encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs), two ribosomal RNA (rRNAs), and one control region (CR). Most of the genes were encoded on majority strand, except nad6 and eight tRNAs. The nonsynonymous/synonymous ratio in all PCGs indicates strong negative selection among all Tupaiidae species. The comparative study of CRs revealed the occurrence of tandem repeats (CGTACA) found in T. nicobarica. The phylogenetic analyses (Maximum Likelihood and Bayesian Inference) showed distinct clustering of T. nicobarica with high branch supports and depict a substantial divergence time (12-19 MYA) from the ancestor lineage of Tupaiidae. The 16S rRNA dataset corroborates the taxonomic rank of two subspecies of T. nicobarica from the Great and Little Nicobar Islands. In the future, whole nuclear genome sequencing is necessary to further improve our understanding of evolutionary relationships among treeshrews, and will have implications for biomedical research.


Asunto(s)
Genoma Mitocondrial
16.
Animals (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611759

RESUMEN

The Indian star tortoise (Geochelone elegans) is a massively traded animal in South Asia. To mitigate this risk, the conservation agencies recommended guidelines to safeguard this charismatic species in nature. We adopted mitochondrial DNA-based investigation and performed species distribution modeling of G. elegans throughout its distribution range in the Indian subcontinent. The genetic analyses revealed weak genetic landscape shape interpolations, low intraspecific distances (0% to 1.5%) with mixed haplotype diversity, and a single molecular operational taxonomic unit (MOTU) in the cytochrome b gene dataset. The star tortoise, G. elegans, and its sister species Geochelone platynota showed a monophyletic clustering in the Bayesian (BA) phylogeny. We also attempt to understand the habitat suitability and quality of G. elegans in its distribution range. Our results suggest that, out of the extant area, only 56,495 km2 (9.90%) is suitable for this species, with regions of highest suitability in Sri Lanka. Comparative habitat quality estimation suggests the patch shape complexity and habitat fragmentation are greater in the western and southern ranges of India, which have been greatly influenced by an increased level of urbanization and agriculture practices. We have also provided a retrospect on the potential threat to G. elegans related to the wildlife trade on the regional and international spectrum. Our results detected multiple trading hubs and junctions overlying within the suitable ranges which need special attention in the vicinity. The present study calls for a proper conservation strategy to combat the fragmented distribution and explicitly recommends intensive genetic screening of founder individuals or isolated adult colonies, implementing scientific breeding, and subsequent wild release to restore the lost genetic diversity of star tortoises.

17.
BMJ Open ; 12(5): e057467, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523504

RESUMEN

INTRODUCTION: Healthcare students have played a significant role in the National Health Service during the COVID-19 pandemic. We captured data on the well-being of medical students during the acute phase of the pandemic with the Social and Psychological Impact of COVID-19 on medical students: a national survey Evaluation (SPICE-19) study. We will evaluate changes in mental health and well-being of medical and nursing students 1 year after SPICE-19, in a cross-sectional study, to understand the impact of the pandemic, and inform well-being policies. METHODS AND ANALYSIS: This study will be a national, multi-institution, cross-discipline study. An online 53-item survey of demographics, mental health and well-being will be used to record responses. Students studying for a medical or nursing degree at any UK universities will be eligible to participate. The survey will be advertised through the Neurology and Neurosurgery Interest Group national network. Participation is anonymous and voluntary, with relevant mental health resources made available to participants. ETHICS AND DISSEMINATION: Ethical approval was granted by the University of Oxford Central University Research Ethics Committee (R75719/RE001) on 21 May 2021. Study findings will be presented at national and international meetings, and submitted for publication in a peer-reviewed journal.


Asunto(s)
COVID-19 , Estudiantes de Medicina , Estudiantes de Enfermería , COVID-19/epidemiología , Estudios Transversales , Humanos , Pandemias , Medicina Estatal , Reino Unido/epidemiología
18.
Mitochondrial DNA B Resour ; 6(12): 3418-3422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869866

RESUMEN

The mitogenome (17,388 bp) of the Nicobar shrew, Crocidura nicobarica was determined in the present study. The mitogenome comprises 13 PCGs (11,427 bp), 22 tRNAs (1507 bp), two rRNAs (2538 bp), and a major non-coding control region (1932 bp). The Maximum Likelihood phylogeny clearly discriminates all the studied Crocidura species with high bootstrap support by concatenated PCGs. The studied species, C. nicobarica shows a close relationship with Crocidura orientalis, distributed in Java, Indonesia. The lineage diversification and zoogeographic patterns are congruent in the present analyses and encouraged further sampling and more molecular data to elucidate their in-depth evolutionary relationship.

19.
Sci Rep ; 11(1): 9416, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941819

RESUMEN

We discovered a new Crocidura species of shrew (Soricidae: Eulipotyphla) from Narcondam Island, India by using both morphological and molecular approaches. The new species, Crocidura narcondamica sp. nov. is of medium size (head and body lengths) and has a distinct external morphology (darker grey dense fur with a thick, darker tail) and craniodental characters (braincase is rounded and elevated with weak lambdoidal ridges) in comparison to other close congeners. This is the first discovery of a shrew from this volcanic island and increases the total number of Crocidura species catalogued in the Indian checklist of mammals to 12. The newly discovered species shows substantial genetic distances (12.02% to 16.61%) to other Crocidura species known from the Indian mainland, the Andaman and Nicobar Archipelago, Myanmar, and from Sumatra. Both Maximum-Likelihood and Bayesian phylogenetic inferences, based on mitochondrial (cytochrome b) gene sequences showed distinct clustering of all included soricid species and exhibit congruence with the previous evolutionary hypothesis on this mammalian group. The present phylogenetic analyses also furnished the evolutionary placement of the newly discovered species within the genus Crocidura.


Asunto(s)
Musarañas , Animales , Citocromos b/genética , Ecosistema , Genoma/genética , India , Islas , Mitocondrias/genética , Mianmar , Musarañas/anatomía & histología , Musarañas/clasificación , Musarañas/genética
20.
Mitochondrial DNA B Resour ; 6(2): 339-343, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33659671

RESUMEN

The complete mitogenome sequence of the brown-headed gull, Chroicocephalus brunnicephalus was determined in this study. The 16,771 bp genome consists of 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes, and a control region (CR). The decoded mitogenome was AT-rich (54.77%) with nine overlapping and 17 intergenic spacer regions. Most of the PCGs were started by a typical ATG initiation codon except for cox1 and nad3. Further, the usual termination codons (AGG, TAG, TAA, and AGA) were used by 11 PCGs except for cox3 and nad4. The concatenated PCGs based Bayesian phylogeny clearly discriminates all the Laridae species and reflects the sister relationship of C. brunnicephalus with C. ridibundus. The present mitogenome-based phylogeny was congruent with the earlier hypothesis and confirmed the evolutionary position of the brown-headed gull as masked species. The generated mitogenome of C. brunnicephalus is almost identical to the previously generated mitogenome from China except for two base pairs in CR. To visualize the population structure of this migratory species, we propose more sampling from different geographical locations and the generation of additional molecular data to clarify the reality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA