Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem Lett ; 13(30): 6944-6955, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35876494

RESUMEN

In this work, we present the ion migration of CsPbIBr2 under illumination and impede it by incorporating the large cations of guanidinium (GA). A series of "probe-set-probe" operations are applied to assess the photoluminescence (PL) behavior spectrally and spatially, which is correlated to the ion migration-induced phase separation, of CsPbIBr2 and GAxCs1-xPbIBr2 perovskites. The local lattice distortion introduced by GA could reduce the strain gradient in GAxCs1-xPbIBr2 to inhibit the ion migration, leading to a stable PL spectrum and enhanced device stability under light stimulation. A solar cell with an optimized stoichiometric composition of GA0.1Cs0.9PbIBr2 delivers comparable photovoltaic performance and improved stability compared to those of CsPbIBr2-based perovskite solar cells, retaining 80% of its initial power conversion efficiency after being continuously bathed in light for 8 h under ambient conditions without encapsulation, while the CsPbIBr2 counterpart shows an efficiency that is <30% of its initial value under the same test condition.

2.
Adv Mater ; 30(8)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29318670

RESUMEN

Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH3 NH3 PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW-1 cm-2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA