Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(6): 2172-2182, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29276178

RESUMEN

Flippases are enzymes that translocate phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) from the outer to the inner leaflet in the lipid bilayer of the plasma membrane, leading to the asymmetric distribution of aminophospholipids in the membrane. One mammalian phospholipid flippase at the plasma membrane is ATP11C, a type IV P-type ATPase (P4-ATPase) that forms a heterocomplex with the transmembrane protein CDC50A. However, the structural features in CDC50A that support the function of ATP11C and other P4-ATPases have not been characterized. Here, using error-prone PCR-mediated mutagenesis of human CDC50A cDNA followed by functional screening and deep sequencing, we identified 14 amino acid residues that affect ATP11C's flippase activity. These residues were all located in CDC50A's extracellular domain and were evolutionarily well-conserved. Most of the mutations decreased CDC50A's ability to chaperone ATP11C and other P4-ATPases to their destinations. The CDC50A mutants failed to form a stable complex with ATP11C and could not induce ATP11C's PtdSer-dependent ATPase activity. Notably, one mutant variant could form a stable complex with ATP11C and transfer ATP11C to the plasma membrane, yet the ATP11C complexed with this CDC50A variant had very weak or little PtdSer- or PtdEtn-dependent ATPase activity. These results indicated that the extracellular domain of CDC50A has important roles both in CDC50A's ability to chaperone ATP11C to the plasma membrane and in inducing ATP11C's ATP hydrolysis-coupled flippase activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antígenos CD/química , Moléculas de Adhesión Celular/química , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Transporte Biológico Activo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Mutagénesis , Unión Proteica
2.
J Biol Chem ; 291(2): 762-72, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26567335

RESUMEN

In plasma membranes, flippases translocate aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from the extracellular to the cytoplasmic leaflet. Mammalian ATP11C, a type IV P-type ATPase, acts as a flippase at the plasma membrane. Here, by expressing 12 human type IV P-type ATPases in ATP11C-deficient cells, we determined that ATP8A2 and ATP11A can also act as plasma membrane flippases. As with ATP11C, ATP8A2 and ATP11A localized to the plasma membrane in a CDC50A-dependent manner. ATP11A was cleaved by caspases during apoptosis, and a caspase-resistant ATP11A blocked apoptotic PtdSer exposure. In contrast, ATP8A2 was not cleaved by caspase, and cells expressing ATP8A2 did not expose PtdSer during apoptosis. Similarly, high Ca(2+) concentrations inhibited the ATP11A and ATP11C PtdSer flippase activity, but ATP8A2 flippase activity was relatively resistant to Ca(2+). ATP11A and ATP11C were ubiquitously expressed in human and mouse adult tissues. In contrast, ATP8A2 was expressed in specific tissues, such as the brain and testis. Thus, ATP8A2 may play a specific role in translocating PtdSer in these tissues.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Calcio/farmacología , Caspasa 3/metabolismo , Membrana Celular/enzimología , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Distribución Tisular/efectos de los fármacos
3.
Blood ; 123(21): 3344-53, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24713928

RESUMEN

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease that presents with thrombocytopenia, disseminated thrombosis, hemolytic anemia, and organ dysfunction. The etiology of TTP has revealed that patients share a deficiency in plasma protease a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), the enzyme responsible for cleaving ultra-large von Willebrand factor (VWF) multimers into nonthrombogenic fragments. Therefore, existing TTP mouse models were developed by targeted disruption of the ADAMTS13 gene. ADAMTS13(-/-) mice are mostly asymptomatic in the absence of a trigger, as redundant proteases appear to take on VWF processing. As an alternative approach to creating one such model, we devised a strategy based on the expression of a cleavage-resistant VWF mutant in mice. The creation of a disulfide bond within the A2 domain of VWF was found to render VWF multimers resistant to proteolysis by plasma proteases under flow. Furthermore, mice expressing the murine VWF/p.S1494C-p.A1534C mutant present with symptoms characteristics of acute TTP such as thrombocytopenia, red cell shredding, accumulation of VWF-rich thrombi in the microvasculature, and advanced TTP symptoms such as renal dysfunction and splenomegaly. Because this model appears to faithfully emulate the pathophysiology of TTP, it should prove most useful in the study of microangiopathic diseases and their treatment.


Asunto(s)
Púrpura Trombocitopénica Trombótica/genética , Púrpura Trombocitopénica Trombótica/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/genética , Secuencia de Aminoácidos , Animales , Disulfuros/química , Disulfuros/metabolismo , Células HEK293 , Humanos , Hidrólisis , Riñón/metabolismo , Riñón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptido Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Púrpura Trombocitopénica Trombótica/patología , Factor de von Willebrand/metabolismo
4.
Science ; 344(6188): 1164-8, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24904167

RESUMEN

Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Apoptosis , Caspasas/metabolismo , Membrana Celular/enzimología , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Adenosina Trifosfatasas/genética , Línea Celular , Pruebas Genéticas , Humanos , Proteínas de Transporte de Membrana , Proteínas de Transferencia de Fosfolípidos/genética , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA