Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(2): 182-188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182809

RESUMEN

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

2.
Materials (Basel) ; 17(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894025

RESUMEN

Aluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce3+-doped Tb3Al5-xScxO12 crystals (where x ranges from 0.5 to 3.0), revealing a novel approach to control luminescence and photoconversion through atomic size mismatch engineering. Raman spectroscopy confirmed the coexistence of garnet and perovskite phases, with Sc substitution significantly influencing the garnet lattice and induced A1g mode softening up to Sc concentration x = 2.0. The Sc atoms controlled sub-eutectic inclusion formation, creating efficient light scattering centers and unveiling a compositional threshold for octahedral site saturation. This modulation enabled the control of energy transfer dynamics between Ce3+ and Tb3+ ions, enhancing luminescence and mitigating quenching. The Sc admixing process regulated luminous efficacy (LE), color rendering index (CRI), and correlated color temperature (CCT), with adjustments in CRI from 68 to 84 and CCT from 3545 K to 12,958 K. The Ce3+-doped Tb3Al5-xScxO12 crystal (where x = 2.0) achieved the highest LE of 114.6 lm/W and emitted light at a CCT of 4942 K, similar to daylight white. This approach enables the design and development of functional materials with tailored optical properties applicable to lighting technology, persistent phosphors, scintillators, and storage phosphors.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34673486

RESUMEN

The effect of the difference in the thickness ratio of the double-layered thickness-shear resonator on the temperature characteristics of the resonance frequency was investigated using a Ca3TaGa3Si2O14 (CTGS) single crystal. Three specimens with thickness ratios of x = 0.25 , 0.33, and 0.50 were prepared using 122° Y - and 171° Y -cut CTGS substrates. For the specimens with x = 0.25 and 0.33, the temperature characteristics varied depending on the order of the resonance mode. For the specimen with x = 0.50 , on the other hand, almost the same temperature characteristics were observed regardless of the order of the resonance mode. To interpret this phenomenon, a new equation for predicting the temperature characteristics of the fundamental mode (first mode) for the double-layered resonator was created using the electric flux density ratio generated in the two substrates. The expected values using this equation were in good agreement with the result of the first mode temperature characteristics.


Asunto(s)
Vibración , Temperatura
4.
Sci Rep ; 11(1): 5948, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723277

RESUMEN

The internal exposure of workers who inhale plutonium dioxide particles in nuclear facilities is a crucial matter for human protection from radiation. To determine the activity median aerodynamic diameter values at the working sites of nuclear facilities in real time, we developed a high-resolution alpha imager using a ZnS(Ag) scintillator sheet, an optical microscope, and an electron-multiplying charge-coupled device camera. Then, we designed and applied a setup to measure a plutonium dioxide particle and identify the locations of the individual alpha particles in real time. Employing a Gaussian fitting, we evaluated the average spatial resolution of the multiple alpha particles was evaluated to be 16.2 ± 2.2 µmFWHM with a zoom range of 5 ×. Also, the spatial resolution for the plutonium dioxide particle was 302.7 ± 4.6 µmFWHM due to the distance between the plutonium dioxide particle and the ZnS(Ag) scintillator. The influence of beta particles was negligible, and alpha particles were discernible in the alpha-beta particle contamination. The equivalent volume diameter of the plutonium dioxide particle was calculated from the measured count rate. These results indicate that the developed alpha imager is effective in the plutonium dioxide particle measurements at the working sites of nuclear facilities for internal exposure dose evaluation.

5.
Genes Cells ; 14(1): 1-16, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19032344

RESUMEN

Pex, a clock-related protein involved in the input pathway of the cyanobacterial circadian clock system, suppresses the expression of clock gene kaiA and lengthens the circadian period. Here, we determined the crystal structure of Anabaena Pex (AnaPex; Anabaena sp. strain PCC 7120) and Synechococcus Pex (SynPex; Synechococcus sp. strain PCC 7942). Pex is a homodimer that forms a winged-helix structure. Using the DNase I protection and electrophoresis mobility shift assays on a Synechococcus kaiA upstream region, we identified a minimal 25-bp sequence that contained an imperfectly inverted repeat sequence as the Pex-binding sequence. Based on crystal structure, we predicted the amino acid residues essential for Pex's DNA-binding activity and examined the effects of various Ala-substitutions in the alpha3 helix and wing region of Pex on in vitro DNA-binding activity and in vivo rhythm functions. Mutant AnaPex proteins carrying a substitution in the wing region displayed no specific DNA-binding activity, whereas those carrying a substitution in the alpha3 helix did display specific binding activity. But the latter were less thermostable than wild-type AnaPex and their in vitro functions were defective. We concluded that Pex binds a kaiA upstream DNA sequence via its wing region and that its alpha3 helix is probably important to its stability.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/química , Synechococcus/metabolismo , Transactivadores/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Bioensayo , Proteínas CLOCK , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Dimerización , Regulación Bacteriana de la Expresión Génica , Mediciones Luminiscentes , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Desnaturalización Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Temperatura , Transactivadores/genética , Transactivadores/metabolismo
6.
Sci Rep ; 7: 41511, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28155870

RESUMEN

Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

7.
Artículo en Inglés | MEDLINE | ID: mdl-27244736

RESUMEN

Acoustically related physical constants were experimentally determined for Ca3Nb(Ga0.75Al0.25)3Si2O14 (CNGAS) single crystal for the first time. Several plate specimens of the X-, Y -, Z -, 40.24 ° Y -, and 144.98 ° Y -cut were prepared from a CNGAS single crystal ingot grown by Czochralski technique. Elastic constants, piezoelectric constants, and their temperature coefficients for CNGAS were determined from longitudinal wave and shear wave velocities at around room temperature, measured by the ultrasonic microspectroscopy system. Dielectric constants, density, and coefficients of thermal expansion were also measured. It was demonstrated that the determined constants could provide calculation accuracy within ±0.12% in leaky surface acoustic wave velocity. The piezoelectric constants for CNGAS were a 7.2% increase in e11 and a 1.7% decrease in e14 due to Al-substitution effect, compared with those of Ca3NbGa3Si2O14. The appropriate cut angle for thickness-shear mode resonator with zero temperature coefficient of velocity was estimated to be around 150 ° Y -cut from calculations using the determined constants of CNGAS exhibiting electromechanical coupling factor k2 of 3.19% and power flow angle of -1.70°.

8.
Materials (Basel) ; 8(9): 5597-5605, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-28793525

RESUMEN

Ca3Nb(Ga1-xAlx)3Si2O14 (CNGAS) single crystals with various Al concentrations were grown by a micro-pulling-down (µ-PD) method and their crystal structures, chemical compositions, crystallinities were investigated. CNGAS crystals with x = 0.2, 0.4 and 0.6 indicated a single phase of langasite-type structure without any secondary phases. In contrast, the crystals with x = 0.8 and 1 included some secondary phases in addition to the langasite-type phase. Lattice parameters, a- and c-axes lengths, of the langasite-type phase systematically decreased with an increase of Al concentration. The results of chemical composition analysis revealed that the actual Al concentrations in as-grown crystals were almost consistent with the nominal compositions. In addition, there was no large segregation of each cation along the growth direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA