Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 166(4): 935-949, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477512

RESUMEN

Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagia , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Masculino , Ratones , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína , Proteolisis
2.
Mol Cell ; 83(13): 2159-2160, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419088

RESUMEN

Most methods for targeted protein degradation (TPD) deliver targets to E3 ubiquitin ligases, leading to proteasomal degradation. In this issue of Molecular Cell, Shaaban et al.1 illuminate cullin-RING ubiquitin ligase (CRL) modulation by CAND1, which can be utilized for TPD.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Proteolisis , Microscopía por Crioelectrón , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo
3.
EMBO J ; 38(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30804002

RESUMEN

NEDD8 is a ubiquitin-like protein that activates cullin-RING E3 ubiquitin ligases (CRLs). Here, we identify a novel role for NEDD8 in regulating the activity of poly(ADP-ribose) polymerase 1 (PARP-1) in response to oxidative stress. We show that treatment of cells with H2O2 results in the accumulation of NEDD8 chains, likely by directly inhibiting the deneddylase NEDP1. One chain type, an unanchored NEDD8 trimer, specifically bound to the second zinc finger domain of PARP-1 and attenuated its activation. In cells in which Nedp1 is deleted, large amounts of tri-NEDD8 constitutively form, resulting in inhibition of PARP-1 and protection from PARP-1-dependent cell death. Surprisingly, these NEDD8 trimers are additionally acetylated, as shown by mass spectrometry analysis, and their binding to PARP-1 is reduced by the overexpression of histone de-acetylases, which rescues PARP-1 activation. Our data suggest that trimeric, acetylated NEDD8 attenuates PARP-1 activation after oxidative stress, likely to delay the initiation of PARP-1-dependent cell death.


Asunto(s)
Muerte Celular , Proteína NEDD8/química , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Acetilación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Oxidantes/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Multimerización de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Biol Chem ; 296: 100153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277362

RESUMEN

Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Proteínas Relacionadas con la Autofagia/genética , Demencia Frontotemporal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Cicloheximida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Serotonina/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Mol Cell ; 43(3): 488-95, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816351

RESUMEN

Cullin proteins are scaffolds for the assembly of multisubunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING domain of Hrt1 nor required the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 and the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING domain protein Tfb3 controls activation of a subset of cullins.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/fisiología , Factores de Transcripción TFII/fisiología , Ubiquitinas/metabolismo , Mutación , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
6.
J Cell Sci ; 129(7): 1441-54, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906416

RESUMEN

Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND-cullin-DCNL complexes might represent 'reserve' CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogénicas/metabolismo , Péptido Sintasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteína NEDD8 , Unión Proteica , Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética
7.
Mol Cell ; 39(5): 784-96, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20832729

RESUMEN

In ubiquitin-like protein (UBL) cascades, a thioester-linked E2∼UBL complex typically interacts with an E3 enzyme for UBL transfer to the target. Here we demonstrate a variant mechanism, whereby the E2 Ubc12 functions with two E3s, Hrt1 and Dcn1, for ligation of the UBL Rub1 to Cdc53's WHB subdomain. Hrt1 functions like a conventional RING E3, with its N terminus recruiting Cdc53 and C-terminal RING activating Ubc12∼Rub1. Dcn1's "potentiating neddylation" domain (Dcn1(P)) acts as an additional E3, reducing nonspecific Hrt1-mediated Ubc12∼Rub1 discharge and directing Ubc12's active site to Cdc53. Crystal structures of Dcn1(P)-Cdc53(WHB) and Ubc12 allow modeling of a catalytic complex, supported by mutational data. We propose that Dcn1's interactions with both Cdc53 and Ubc12 would restrict the otherwise flexible Hrt1 RING-bound Ubc12∼Rub1 to a catalytically competent orientation. Our data reveal mechanisms by which two E3s function synergistically to promote UBL transfer from one E2 to a target.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Cristalografía por Rayos X , Proteínas Cullin/química , Proteínas Cullin/genética , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Estructura Terciaria de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/química , Ubiquitinas/genética
8.
Cell Mol Life Sci ; 74(7): 1261-1280, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27815594

RESUMEN

Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión/patología , Receptores de Droga/metabolismo , Transducción de Señal , Simportadores del Cloruro de Sodio/metabolismo , Animales , Proteínas Cullin/metabolismo , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Neovascularización Fisiológica , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/patología , Receptores de Droga/química , Receptores de Droga/genética , Simportadores del Cloruro de Sodio/química , Simportadores del Cloruro de Sodio/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo
9.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25855810

RESUMEN

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Complejo del Señalosoma COP9 , Línea Celular , Células Cultivadas , Proteínas Cullin/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo
10.
Biochem J ; 466(3): 489-98, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25489924

RESUMEN

Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Polímeros/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Escherichia coli/química , Polímeros/química , Estructura Terciaria de Proteína , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitinación/fisiología
11.
Biochem J ; 460(2): 237-46, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24641320

RESUMEN

WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain ß-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Proteínas Portadoras/fisiología , Hipertensión/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Presión Sanguínea/genética , Proteínas Portadoras/genética , Cristalización , Cristalografía por Rayos X , Proteínas Cullin/genética , Proteínas Cullin/fisiología , Humanos , Proteínas de Microfilamentos/fisiología , Antígenos de Histocompatibilidad Menor , Proteínas del Tejido Nervioso/fisiología , Ubiquitinación , Proteína Quinasa Deficiente en Lisina WNK 1
12.
Biochem J ; 451(1): 111-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23387299

RESUMEN

The WNK (with no lysine kinase)-SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin-RING E3 ubiquitin ligase complexes. To explore how a CUL3-KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na(+)/Cl(-) co-transporter)/NKCC1 (Na(+)/K(+)/2Cl(-) co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3-KLHL3 E3 ligase complex, but not a disease-causing CUL3-KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479-667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479-667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3-KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Mutación Missense , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/enzimología , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Proteínas Portadoras/genética , Proteínas Cullin/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos , Antígenos de Histocompatibilidad Menor , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12 , Proteína Quinasa Deficiente en Lisina WNK 1
13.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608019

RESUMEN

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células de Schwann , Animales , Ratones , Vaina de Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Procesamiento Proteico-Postraduccional
14.
EMBO J ; 28(24): 3845-56, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19942853

RESUMEN

Cullin-based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin-like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mammalian Cand1. Similar to Cand1, Lag2 directly interacts with non-neddylated yeast cullin Cdc53 and prevents its neddylation in vivo and in vitro. Binding occurs through a conserved C-terminal beta-hairpin structure that inserts into the Skp1-binding pocket on the cullin, and an N-terminal motif that covers the neddylation lysine. Interestingly, Lag2 is itself neddylated in vivo on a lysine adjacent to this N-terminal-binding site. Overexpression of Lag2 inhibits Cdc53 activity in strains defective for Skp1 or neddylation functions, implying that these activities are important to counteract Lag2 in vivo. Our results favour a model in which binding of substrate-specific adaptors triggers release of Cand1/Lag2, whereas subsequent neddylation of the cullin facilitates the removal and prevents re-association of Lag2/Cand1.


Asunto(s)
Proteínas Cullin/química , Regulación Fúngica de la Expresión Génica , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Cullin/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/química
15.
Biochem J ; 441(3): 927-36, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004789

RESUMEN

Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ubiquitinas/metabolismo , Animales , Ácidos Borónicos/farmacología , Bortezomib , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteína NEDD8 , Pirazinas/farmacología , Transfección , Ubiquitina/análisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ubiquitinas/análisis , Ubiquitinas/genética
16.
Nat Commun ; 14(1): 5922, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739965

RESUMEN

Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-ß (Aß) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aß peptides, and Aß build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Transducción de Señal , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Técnicas de Cultivo Tridimensional de Células
17.
Anal Biochem ; 428(1): 64-72, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705378

RESUMEN

Penicillin-binding protein 5 (PBP5), a product of the Escherichia coli gene dacA, possesses some ß-lactamase activity. On binding to penicillin or related antibiotics via an ester bond, it deacylates and destroys them functionally by opening the ß-lactam ring. This process takes several minutes. We exploited this process and showed that a fragment of PBP5 can be used as a reversible and monomeric affinity tag. At ambient temperature (e.g., 22°C), a PBP5 fragment binds rapidly and specifically to ampicillin Sepharose. Release can be facilitated either by eluting with 10mM ampicillin or in a ligand-free manner by incubation in the cold (1-10°C) in the presence of 5% glycerol. The "Dac-tag", named with reference to the gene dacA, allows the isolation of remarkably pure fusion protein from a wide variety of expression systems, including (in particular) eukaryotic expression systems.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Animales , Tampones (Química) , Dictyostelium/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Insectos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(30): 12365-70, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19617556

RESUMEN

Cullin (Cul)-based E3 ubiquitin ligases are activated through the attachment of Nedd8 to the Cul protein. In yeast, Dcn1 (defective in Cul neddylation 1 protein) functions as a scaffold-like Nedd8 E3-ligase by interacting with its Cul substrates and the Nedd8 E2 Ubc12. Human cells express 5 Dcn1-like (DCNL) proteins each containing a C-terminal potentiating neddylation domain but distinct amino-terminal extensions. Although the UBA-containing DCNL1 and DCNL2 are likely functional homologues of yeast Dcn1, DCNL3 also interacts with human Culs and is able to complement the neddylation defect of yeast dcn1Delta cells. DCNL3 down-regulation by RNAi decreases Cul neddylation, and overexpression of a Cul3 mutant deficient in DCNL3 binding interferes with Cul3 function in vivo. Interestingly, DCNL3 accumulates at the plasma membrane through a conserved, lipid-modified motif at the N terminus. Membrane-bound DCNL3 is able to recruit Cul3 to membranes and is functionally important for Cul3 neddylation in vivo. We conclude that DCNL proteins function as nonredundant Cul Nedd8-E3 ligases. Moreover, the diversification of the N termini in mammalian Dcn1 homologues may contribute to substrate specificity by regulating their subcellular localization.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Cullin/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Cullin/genética , Técnica del Anticuerpo Fluorescente , Prueba de Complementación Genética , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Mutación , Proteína NEDD8 , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas de Saccharomyces cerevisiae/genética , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Nature ; 435(7046): 1257-61, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15988528

RESUMEN

SCF-type E3 ubiquitin ligases are multi-protein complexes required for polyubiquitination and subsequent degradation of target proteins by the 26S proteasome. Cullins, together with the RING-finger protein Rbx1, form the catalytic core of the ligase, and recruit the substrate-recognition module. Cycles of covalent modification of cullins by the ubiquitin-like molecule Nedd8 (neddylation) and removal of Nedd8 by the COP9 signalosome (deneddylation) positively regulate E3 ligase activity. Here we report the identification and analysis of a widely conserved protein that is required for cullin neddylation in the nematode Caenorhabditis elegans and the yeast Saccharomyces cerevisiae. C. elegans DCN-1 and S. cerevisiae Dcn1p (defective in cullin neddylation) are characterized by a novel UBA-like ubiquitin-binding domain and a DUF298 domain of unknown function. Consistent with their requirements for neddylation, DCN-1 and Dcn1p directly bind Nedd8 and physically associate with cullins in both species. Moreover, overexpression of Dcn1p in yeast results in the accumulation of Nedd8-modified cullin Cdc53p. Both in vivo and in vitro experiments indicate that Dcn1p does not inhibit deneddylation of Cdc53p by the COP9 signalosome, but greatly increases the kinetics of the neddylation reaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Complejo del Señalosoma COP9 , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catálisis , Proteínas Cullin/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
20.
Nature ; 425(6955): 311-6, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-13679921

RESUMEN

Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (Elongin C-Cul2-SOCS box) complexes are two well-defined cullin-based E3-ligases. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Ligasas/química , Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Sustancias Macromoleculares , Meiosis , Microtúbulos/metabolismo , Mitosis , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA