Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(5): 6945-6962, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439388

RESUMEN

Both inside data centers (DCs) and in short optical links between data centers (DC campuses), intensity-modulation and direct-detection (IMDD) systems using four-level pulse amplitude modulation (PAM4) will dominate this decade due to low transceiver price and power consumption. The next DC transceiver generation based on 100 Gbaud PAM4 will require advanced digital signal processing (DSP) algorithms and more powerful forward error correction (FEC) codes. Because of bandwidth limitations, the conventional DC DSP based on a few-tap linear feed-forward equalizer (FFE) is likely to be upgraded to more complex but still low-complexity Volterra equalizers followed by a noise whitening filter and either a maximum likelihood sequence estimation (MLSE) or a maximum a posteriori probability (MAP) algorithm. However, stringent power consumption and latency requirements may limit the use of complex algorithms such as decision feedback equalizer (DFE) or MLSE/MAP in DC networks (DCN). In this paper, we introduce a low-complexity, low-latency algorithm based on a feedforward structure, yielding a performance between DFE and MLSE. We call the novel equalization algorithm probabilistic noise cancellation (PNC), since it weights noise patterns based on their probabilities in the presence of bandwidth limitations. The probabilistic weighting is efficiently exploited in correcting correlated errors caused by noise coloring in the FFE.

2.
Opt Express ; 28(23): 35240-35250, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182974

RESUMEN

This work contributes experimental demonstrations and comprehensive comparisons of various modulation and coding techniques for 200 Gb/s intensity modulation and direct detection links including four-level pulse amplitude modulation (PAM-4), PAM-6, trellis-coded modulation (TCM) over PAM and discrete multi-tone (DMT) transmission. Both C-band Mach-Zehnder modulator and O-band electro-absorption modulated laser transmitters were examined for intra-data center applications based on state-of-the-art commercial components.

3.
Opt Express ; 23(8): 9589-601, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25968995

RESUMEN

Few-mode fiber transmission systems are typically impaired by mode-dependent loss (MDL). In an MDL-impaired link, maximum-likelihood (ML) detection yields a significant advantage in system performance compared to linear equalizers, such as zero-forcing and minimum-mean square error equalizers. However, the computational effort of the ML detection increases exponentially with the number of modes and the cardinality of the constellation. We present two methods that allow for near-ML performance without being afflicted with the enormous computational complexity of ML detection: improved reduced-search ML detection and sphere decoding. Both algorithms are tested regarding their performance and computational complexity in simulations of three and six spatial modes with QPSK and 16QAM constellations.

4.
Opt Express ; 23(19): 24759-69, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406677

RESUMEN

To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such in this work, we combine wavelength and mode-division multiplexed transmission over a 4.45 km low-DMGD 6-LP-mode fiber by employing low-loss all-fiber 10-port photonic lanterns to couple light in and out of the fiber. Hence, a minimum DMGD of 0.2 ns (maximum 0.357 ns) is measured after 4.45 km. Instrumental to the multi-mode transmission system is the employed time-domain-SDM receiver, allowing 10 spatial mode channels (over both polarizations) to be captured using only 3 coherent receivers and real-time oscilloscopes in comparison with 10 for conventional methods. The spatial channels were unraveled using 20 × 20 multiple-input multiple-output digital signal processing. By employing a novel round-robin encoding technique, stable performance over a long measurement period demonstrates the feasibility of 10x increase in single-core multi-mode transmission.

5.
Opt Lett ; 40(3): 328-31, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25680039

RESUMEN

We report the transmission of 163-Gb/s MDM-QPSK-OFDM and 245-Gb/s MDM-8QAM-OFDM transmission over 74 km of few-mode fiber supporting 12 spatial and polarization modes. A low-complexity maximum likelihood detector is employed to enhance the performance of a system impaired by mode-dependent loss.

6.
Opt Express ; 21(26): 32184-91, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24514812

RESUMEN

Flex-grid optical networks have evolved as a near-future deployment option to facilitate dynamic and bandwidth intense traffic demands. These networks enable capacity gains by operating on a flexible spectrum, allocating minimum required bandwidth, for a given channel configuration. It is thus important to understand the nonlinear dynamics of various high bit-rate super-channel configurations, and whether such channels should propagate homogenously (uniform channel configuration) or heterogeneously (non-uniform channel configuration), when upgrading the current static network structure to a flex-grid network. In this paper, we report on the spectrum allocation strategies based on the impact of inter-channel fiber nonlinearities, for PM-16QAM channels (240Gb/s, 480Gb/s and 1.2Tb/s) -termed as super-channels, propagating both homogenously, and heterogeneously with 120Gb/s PM-QPSK, 43Gb/s PM-QPSK, and 43Gb/s DPSK traffic. In particular, we show that for high dispersion fibers, both homogenous and heterogeneous spectrum allocation enable similar performance, i.e. the nonlinear impact of hybrid traffic is found to be minimal (less than 0.5dB relative penalties). We further report that in low dispersion fibers, the impact of spectrum allocation is more pronounced, and heterogeneous traffic employing 120Gb/s PM-QPSK neighbors enables the best performance, ~0.5dB better than homogenous transmission. However, the absolute nonlinear impact of co-propagating traffic is more significant, compared to high dispersion fibers, with maximum performance penalties up to 1.5dB.

7.
Opt Express ; 20(26): B608-14, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23262909

RESUMEN

DFTS-OFDM has been proposed recently as an alternative to coherent optical OFDM due to its improved transmission performance. This paper proposes spectral shaping for DFTS-OFDM which reduces the PAPR leading to further improvement in nonlinear tolerance. It is shown that for both SSMF and LEAF, the optimized spectrally shaped DFTS-OFDM outperforms DFTS-OFDM for dispersion managed and unmanaged links by ~10.8% and ~6.8%, respectively. The number of bands and the excess bandwidth parameters are also investigated to optimize the transmission performance.

8.
Opt Express ; 20(28): 29776-83, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23388805

RESUMEN

Spatial-division multiplexing in the form of few-mode fibers has captured the attention of researchers since it is an attractive approach to significantly increase the channel capacity. However, the optical components employed in such systems introduce mode-dependent loss or gain (MDL) due to manufacturing imperfections, leading to significant system impairments. In this work the impact of MDL from optical amplifiers in few-mode fibers with either weak or strong mode coupling is analyzed for a 3x136-Gbit/s DP-QPSK mode-division multiplexed transmission system. It is shown that strong mode coupling reduces the impact of MDL in a similar manner as that polarization-dependent loss is reduced in single mode fibers by polarization-mode dispersion.

9.
Opt Express ; 20(10): 10859-69, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565711

RESUMEN

The complexities of common equalizer schemes are analytically analyzed in this paper in terms of complex multiplications per bit. Based on this approach we compare the complexity of mode-division multiplexed digital signal processing algorithms with different numbers of multiplexed modes in terms of modal dispersion and distance. It is found that training symbol based equalizers have significantly lower complexity compared to blind approaches for long-haul transmission. Among the training symbol based schemes, OFDM requires the lowest complexity for crosstalk compensation in a mode-division multiplexed receiver. The main challenge for training symbol based schemes is the additional overhead required to compensate modal crosstalk, which increases the data rate. In order to achieve 2000 km transmission, the effective modal dispersion must therefore be below 6 ps/km when the OFDM specific overhead is limited to 10%. It is concluded that for few mode transmission systems the reduction of modal delay is crucial to enable long-haul performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA