Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
IEEE Trans Nanobioscience ; 23(1): 176-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37490368

RESUMEN

Molecular Communications (MC) is a bio-inspired communication technique that uses molecules to encode and transfer information. Many efforts have been devoted to developing novel modulation techniques for MC based on various distinguishable characteristics of molecules, such as their concentrations or types. In this paper, we investigate a particular modulation scheme called Ratio Shift Keying (RSK), where the information is encoded in the concentration ratio of two different types of molecules. RSK modulation is hypothesized to enable accurate information transfer in dynamic MC scenarios where the time-varying channel characteristics affect both types of molecules equally. To validate this hypothesis, we first conduct an information-theoretical analysis of RSK modulation and derive the capacity of the end-to-end MC channel where the receiver estimates concentration ratio based on ligand-receptor binding statistics in an optimal or suboptimal manner. We then analyze the error performance of RSK modulation in a practical time-varying MC scenario, that is mobile MC, in which both the transmitter and the receiver undergo diffusion-based propagation. Our numerical and analytical results, obtained for varying levels of similarity between the ligand types used for ratio-encoding, and varying number of receptors, show that RSK can significantly outperform the most commonly considered MC modulation technique, concentration shift keying (CSK), in dynamic MC scenarios.


Asunto(s)
Comunicación , Computadores Moleculares , Ligandos , Difusión
2.
Life (Basel) ; 13(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676156

RESUMEN

Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as molecular communication, such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.

3.
Sci Rep ; 11(1): 19600, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599208

RESUMEN

Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.

4.
IEEE Trans Nanobioscience ; 17(1): 44-54, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29570074

RESUMEN

Molecular Communication (MC) is a bio-inspired communication technique that uses molecules as a method of information transfer among nanoscale devices. MC receiver is an essential component having profound impact on the communication system performance. However, the interaction of the receiver with information bearing molecules has been usually oversimplified in modeling the reception process and developing signal detection techniques. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. Exploiting the observable characteristics of ligand-receptor binding reaction, we first introduce a Maximum Likelihood (ML) detection method based on instantaneous receptor occupation ratio, as aligned with the current MC literature. Then, we propose a novel ML detection technique, which exploits the amount of time the receptors stay unbound in an observation time window. A comprehensive analysis is carried out to compare the performance of the detectors in terms of bit error probability. In evaluating the detection performance, emphasis is given to the receptor saturation problem resulting from the accumulation of messenger molecules at the receiver as a consequence of intersymbol interference. The results reveal that detection based on receptor unbound time is quite reliable even in saturation, whereas the reliability of detection based on receptor occupation ratio substantially decreases as the receiver gets saturated. Finally, we also discuss the potential methods of implementing the detectors.


Asunto(s)
Biotecnología/métodos , Computadores Moleculares , Internet , Nanotecnología/métodos , Difusión , Ligandos , Modelos Biológicos
5.
PLoS One ; 13(2): e0192202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29415019

RESUMEN

We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.


Asunto(s)
Internet , Microfluídica , Modelos Teóricos , Nanotecnología , Análisis de Elementos Finitos , Propiedades de Superficie
6.
PLoS One ; 13(3): e0193154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29538405

RESUMEN

Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).


Asunto(s)
Procesamiento Automatizado de Datos , Internet , Modelos Teóricos , Lenguajes de Programación , Tecnología Inalámbrica
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3043-3047, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268953

RESUMEN

Molecular communication (MC) is a bio-inspired communication method based on the exchange of molecules for information transfer among nanoscale devices. Although MC has been extensively studied from various aspects, limitations imposed by the physical design of transceiving units have been largely neglected in the literature. Recently, we have proposed a nanobioelectronic MC receiver architecture based on the nanoscale field effect transistor-based biosensor (bioFET) technology, providing noninvasive and sensitive molecular detection at nanoscale while producing electrical signals at the output. In this paper, we derive analytical closed-form expressions for the capacity and capacity-achieving input distribution for a memoryless MC channel with a silicon nanowire (SiNW) FET-based MC receiver. The resulting expressions could be used to optimize the information flow in MC systems equipped with nanobioelectronic receivers.


Asunto(s)
Redes de Comunicación de Computadores , Nanocables/química , Silicio/química , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Simulación por Computador , Difusión
8.
Sci Rep ; 5: 7831, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25591972

RESUMEN

Nanocommunications via Förster Resonance Energy Transfer (FRET) is a promising means of realising collaboration between photoactive nanomachines to implement advanced nanotechnology applications. The method is based on exchange of energy levels between fluorescent molecules by the FRET phenomenon which intrinsically provides a virtual nanocommunication link. In this work, further to the extensive theoretical studies, we demonstrate the first information transfer through a FRET-based nanocommunication channel. We implement a digital communication system combining macroscale transceiver instruments and a bulk solution of fluorophore nanoantennas. The performance of the FRET-based Multiple-Input and Multiple-Output (MIMO) nanocommunication channel between closely located mobile nanoantennas in the sample solution is evaluated in terms of Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER) obtained for the transmission rates of 50 kbps, 150 kbps and 250 kbps. The results of the performance evaluation are very promising for the development of high-rate and reliable molecular communication networks at nanoscale.

9.
IEEE Trans Nanobioscience ; 13(3): 315-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25095261

RESUMEN

Nanoscale communication based on Förster Resonance Energy Transfer (FRET) enables nanoscale single molecular devices to communicate with each other utilizing excitons generated on fluorescent molecules as information carriers. Based on the point-to-point single-exciton FRET-based nanocommunication model, we investigate the multiple-exciton case for point-to-point and broadcast communications following an information theoretical approach and conducting simulations through Monte Carlo approach. We demonstrate that the multi-exciton transmission significantly improves the channel reliability and the range of the communication up to tens of nanometers for immobile nanonodes providing high data transmission rates. Furthermore, our analyses indicate that multi-exciton transmission enables broadcasting of information from a transmitter nanonode to many receiver nanonodes pointing out the potential of FRET-based communication to extend over nanonetworks. In this study, we also propose electrically and chemically controllable routing mechanisms exploiting the strong dependence of FRET rate on spectral and spatial characteristics of fluorescent molecules. We show that the proposed routing mechanisms enable the remote control of information flow in FRET-based nanonetworks. The high transmission rates obtained by multi-exciton scheme for point-to-point and broadcast communications, as well as the routing opportunities make FRET-based communication promising for future molecular computers.


Asunto(s)
Comunicación , Computadores Moleculares , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanotecnología/métodos , Algoritmos , Colorantes Fluorescentes , Método de Montecarlo
10.
IEEE Trans Nanobioscience ; 13(3): 255-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25014963

RESUMEN

Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.


Asunto(s)
Computadores Moleculares , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanotecnología/métodos , Comunicación , Colorantes Fluorescentes/química , Cadenas de Markov
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA