Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 118: 398-407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461957

RESUMEN

Although oxytocin may provide a novel therapeutics for the core features of autism spectrum disorder (ASD), previous results regarding the efficacy of repeated or higher dose oxytocin are controversial, and the underlying mechanisms remain unclear. The current study is aimed to clarify whether repeated oxytocin alter plasma cytokine levels in relation to clinical changes of autism social core feature. Here we analyzed cytokine concentrations using comprehensive proteomics of plasmas of 207 adult males with high-functioning ASD collected from two independent multi-center large-scale randomized controlled trials (RCTs): Testing effects of 4-week intranasal administrations of TTA-121 (A novel oxytocin spray with enhanced bioavailability: 3U, 6U, 10U, or 20U/day) and placebo in the crossover discovery RCT; 48U/day Syntocinon or placebo in the parallel-group verification RCT. Among the successfully quantified 17 cytokines, 4 weeks TTA-121 6U (the peak dose for clinical effects) significantly elevated IL-7 (9.74, 95 % confidence interval [CI] 3.59 to 15.90, False discovery rate corrected P (PFDR) < 0.001), IL-9 (56.64, 20.46 to 92.82, PFDR < 0.001) and MIP-1b (18.27, 4.96 to 31.57, PFDR < 0.001) compared with placebo. Inverted U-shape dose-response relationships peaking at TTA-121 6U were consistently observed for all these cytokines (IL-7: P < 0.001; IL-9: P < 0.001; MIP-1b: P = 0.002). Increased IL-7 and IL-9 in participants with ASD after 4 weeks TTA-121 6U administration compared with placebo was verified in the confirmatory analyses in the dataset before crossover (PFDR < 0.001). Furthermore, the changes in all these cytokines during 4 weeks of TTA-121 10U administration revealed associations with changes in reciprocity score, the original primary outcome, observed during the same period (IL-7: Coefficient = -0.05, -0.10 to 0.003, P = 0.067; IL-9: -0.01, -0.02 to -0.003, P = 0.005; MIP-1b: -0.02, -0.04 to -0.007, P = 0.005). These findings provide the first evidence for a role of interaction between oxytocin and neuroinflammation in the change of ASD core social features, and support the potential role of this interaction as a novel therapeutic seed. Trial registration: UMIN000015264, NCT03466671/UMIN000031412.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Masculino , Humanos , Oxitocina , Trastorno Autístico/tratamiento farmacológico , Citocinas , Interleucina-7 , Interleucina-9/uso terapéutico , Método Doble Ciego , Trastorno del Espectro Autista/tratamiento farmacológico , Administración Intranasal , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Artículo en Inglés | MEDLINE | ID: mdl-39403837

RESUMEN

AIM: Bipolar disorder (BD) is a common psychiatric disorder characterized by alterations between manic/hypomanic and depressive states. Rare pathogenic copy number variations (CNVs) that overlap with exons of synaptic genes have been associated with BD. However, no study has comprehensively explored CNVs in synaptic genes associated with BD. Here, we evaluated the relationship between BD and rare CNVs that overlap with synaptic genes, not limited to exons, in the Japanese population. METHODS: Using array comparative genome hybridization, we detected CNVs in 1839 patients with BD and 2760 controls. We used the Synaptic Gene Ontology database to identify rare CNVs that overlap with synaptic genes. Using gene-based analysis, we compared their frequencies between the BD and control groups. We also searched for synaptic gene sets related to BD. The significance level was set to a false discovery rate of 10%. RESULTS: The RNF216 gene was significantly associated with BD (odds ratio, 4.51 [95% confidence interval, 1.66-14.89], false discovery rate < 10%). The BD-associated CNV that corresponded with RNF216 also partially overlapped with the minimal critical region of the 7p22.1 microduplication syndrome. The integral component of the postsynaptic membrane (Gene Ontology:0099055) was significantly associated with BD. The CNV overlapping with the intron region of GRM5 in this gene set showed a nominal significant association between cases and controls (P < 0.05). CONCLUSION: We provide evidence that CNVs in RNF216 and postsynaptic membrane-related genes confer a risk of BD, contributing to a better understanding of the pathogenesis of BD.

3.
J Neurochem ; 165(2): 211-229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807153

RESUMEN

Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.


Asunto(s)
Trastorno del Espectro Autista , Dopamina , Animales , Ratones , Cognición , Dopamina/metabolismo , Emociones , Glicoproteínas/metabolismo , Ratones Noqueados , Morfogénesis
4.
Hum Genet ; 142(7): 949-964, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37198333

RESUMEN

The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Humanos , Cisteína/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Ciclo Celular/genética , ADN Helicasas/genética , Microcefalia/genética , Fenotipo , Zinc , Discapacidad Intelectual/genética , Componente 6 del Complejo de Mantenimiento de Minicromosoma/genética
5.
J Hum Genet ; 68(3): 175-182, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35821406

RESUMEN

Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple
6.
Brain ; 145(2): 490-499, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35067719

RESUMEN

Although intranasal oxytocin is expected to be a novel therapy for the core symptoms of autism spectrum disorder, which has currently no approved medication, the efficacy of repeated administrations was inconsistent, suggesting that the optimal dose for a single administration of oxytocin is not optimal for repeated administration. The current double-blind, placebo-controlled, multicentre, crossover trial (ClinicalTrials.gov Identifier: NCT03466671) was aimed to test the effect of TTA-121, a new formulation of intranasal oxytocin spray with an enhanced bioavailability (3.6 times higher than Syntocinon® spray, as assessed by area under the concentration-time curve in rabbit brains), which enabled us to test a wide range of multiple doses, on autism spectrum disorder core symptoms and to determine the dose-response relationship. Four-week administrations of TTA-121, at low dose once per day (3 U/day), low dose twice per day (6 U/day), high dose once per day (10 U/day), or high dose twice per day (20 U/day), and 4-week placebo were administered in a crossover manner. The primary outcome was the mean difference in the reciprocity score (range: 0-14, higher values represent worse outcomes) on the Autism Diagnostic Observation Schedule between the baseline and end point of each administration period. This trial with two administration periods and eight groups was conducted at seven university hospitals in Japan, enrolling adult males with high-functioning autism spectrum disorder. Enrolment began from June 2018 and ended December 2019. Follow-up ended March 2020. Of 109 males with high-functioning autism spectrum disorder who were randomized, 103 completed the trial. The smallest P-value, judged as the dose-response relationship, was the contrast with the peak at TTA-121 6 U/day, with inverted U-shape for both the full analysis set (P = 0.182) and per protocol set (P = 0.073). The Autism Diagnostic Observation Schedule reciprocity score, the primary outcome, was reduced in the TTA-121 6 U/day administration period compared with the placebo (full analysis set: P = 0.118, mean difference = -0.5; 95% CI: -1.1 to 0.1; per protocol set: P = 0.012, mean difference = -0.8; 95% CI: -1.3 to -0.2). The per protocol set was the analysis target population, consisting of all full analysis set participants except those who deviated from the protocol. Most dropouts from the full analysis set to the per protocol set occurred because of poor adherence to the test drug (9 of 12 in the first period and 8 of 15 in the second period). None of the secondary clinical and behavioural outcomes were significantly improved with the TTA-121 compared with the placebo in the full analysis set. A novel intranasal spray of oxytocin with enhanced bioavailability enabled us to test a wide range of multiple doses, revealing an inverted U-shape dose-response curve, with the peak at a dose that was lower than expected from previous studies. The efficacy of TTA-121 shown in the current exploratory study should be verified in a future large-scale, parallel-group trial.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Administración Intranasal , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno Autístico/tratamiento farmacológico , Disponibilidad Biológica , Método Doble Ciego , Femenino , Humanos , Masculino , Rociadores Nasales , Oxitocina , Conejos , Resultado del Tratamiento
7.
Int Rev Psychiatry ; 34(2): 154-167, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35699097

RESUMEN

Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.


Asunto(s)
Trastorno del Espectro Autista , Ensamble y Desensamble de Cromatina , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Japón , Mutación Missense , Proteínas Nucleares/genética , Esquizofrenia , Factores de Transcripción/genética
8.
Psychiatry Clin Neurosci ; 76(9): 423-428, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35611833

RESUMEN

AIM: Eating disorders (EDs) are complex, multifactorial psychiatric conditions. Previous studies identified pathogenic copy number variations associated with NDDs (NDD-CNVs) in ED patients. However, no statistical evidence for an association between NDD-CNVs and EDs has been demonstrated. Therefore, we examined whether NDD-CNVs confer risk for EDs. METHODS: Using array comparative genomic hybridization (aCGH), we conducted a high-resolution CNV analysis of 71 severe female ED patients and 1045 female controls. According to the American College of Medical Genetics guidelines, we identified NDD-CNVs or pathogenic/likely pathogenic CNVs in NDD-linked loci. Gene set analysis was performed to examine the involvement of synaptic dysfunction in EDs. Clinical data were retrospectively examined for ED patients with NDD-CNVs. RESULTS: Of the samples analyzed with aCGH, 70 severe ED patients (98.6%) and 1036 controls (99.1%) passed our quality control filtering. We obtained 189 and 2539 rare CNVs from patients and controls, respectively. NDD-CNVs were identified in 10.0% (7/70) of patients and 2.3% (24/1036) of controls. Statistical analysis revealed a significant association between NDD-CNVs and EDs (odds ratio = 4.69, P = 0.0023). NDD-CNVs in ED patients included 45,X and deletions at KATNAL2, DIP2A, PTPRT, RBFOX1, CNTN4, MACROD2, and FAM92B. Four of these genes were related to synaptic function. In gene set analysis, we observed a nominally significant enrichment of rare exonic CNVs in synaptic signaling in ED patients (odds ratio = 2.55, P = 0.0254). CONCLUSION: Our study provides the first preliminary evidence that NDD-CNVs may confer risk for severe EDs. The pathophysiology may involve synaptic dysfunction.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos de Alimentación y de la Ingestión de Alimentos , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Femenino , Humanos , Estudios Retrospectivos
9.
Psychiatry Clin Neurosci ; 76(12): 667-673, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36073611

RESUMEN

AIM: The aims of the present study were: (i) to examine the association between schizophrenia (SCZ) and 47, XXY or 47, XXX in a large case-control sample; and (ii) to characterize the clinical features of patients with SCZ with these X chromosome aneuploidies. METHODS: To identify 47, XXY and 47, XXX, array comparative genomic hybridization (aCGH) was performed in 3188 patients with SCZ and 3586 controls. We examined the association between 47, XXY and 47, XXX and SCZ in males and females separately using exact conditional tests to control for platform effects. Clinical data were retrospectively examined for patients with SCZ with X chromosome aneuploidies. RESULTS: Of the analyzed samples, 3117 patients (97.8%) and 3519 controls (98.1%) passed our quality control. X chromosome aneuploidies were exclusively identified in patients: 47, XXY in seven patients (0.56%), 47, XXX in six patients (0.42%). Statistical analysis revealed a significant association between SCZ and 47, XXY (P = 0.028) and 47, XXX (P = 0.011). Phenotypic data were available from 12 patients. Treatment-resistance to antipsychotics and manic symptoms were observed in six patients each (four with 47, XXY and two with 47, XXX for both), respectively. Statistical analysis revealed that treatment-resistance to antipsychotics, mood stabilizer use, and manic symptoms were significantly more common in patients with 47, XXY than in male patients without pathogenic copy number variations. CONCLUSION: These findings indicate that both 47, XXY and 47, XXX are significantly associated with risk for SCZ. Patients with SCZ with 47, XXY may be characterized by treatment-resistance and manic symptoms.


Asunto(s)
Antipsicóticos , Esquizofrenia , Femenino , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Variaciones en el Número de Copia de ADN , Hibridación Genómica Comparativa , Estudios Retrospectivos , Aneuploidia , Cromosoma X
10.
Psychiatry Clin Neurosci ; 76(1): 1-14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716732

RESUMEN

The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.


Asunto(s)
Macrodatos , Análisis de Datos , Trastornos Mentales , Estudios Multicéntricos como Asunto , Psiquiatría , Investigación Biomédica Traslacional , Animales , Humanos , Trastornos Mentales/genética , Metaanálisis como Asunto , Neuroimagen , Reproducibilidad de los Resultados
11.
J Hum Genet ; 66(1): 25-37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32958875

RESUMEN

Copy number variants (CNVs), defined as genome sequences of ≥50 bp that differ in copy number from that in a reference genome, are a common form of structural variation. Germline CNVs account for some of the missing heritability that single nucleotide polymorphisms could not account for. Recent technological advances have had a huge impact on CNV research. Microarray technology enables relatively low-cost, high-throughput, genome-wide measurements, and short-read sequencing technology enables the detection of short CNVs that cannot be detected by microarrays. As a result, large-scale genetic studies have been able to identify a variety of common and rare germline CNVs and their associations with diseases. Rare germline CNVs have been reported to be associated with neuropsychiatric disorders. In this review, we focused on germline CNVs and briefly described their functional characteristics, formation mechanisms, detection methods, related databases, and the latest findings. Finally, we introduced recent large-scale genetic studies to assess associations of CNVs with diseases, especially psychiatric disorders, and discussed the use of CNV-based animal models to investigate the molecular and cellular mechanisms underlying these disorders. The development and implementation of improved detection methods, such as long-read single-molecule sequencing, are expected to provide additional insight into the molecular basis of psychiatric disorders and other complex diseases, thus facilitating basic and clinical research on CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Mutación de Línea Germinal , Trastornos Mentales/genética , Animales , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple
12.
Mol Psychiatry ; 25(8): 1849-1858, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-29955161

RESUMEN

Although small-scale studies have described the effects of oxytocin on social deficits in autism spectrum disorder (ASD), no large-scale study has been conducted. In this randomized, parallel-group, multicenter, placebo-controlled, double-blind trial in Japan, 106 ASD individuals (18-48 y.o.) were enrolled between Jan 2015 and March 2016. Participants were randomly assigned to a 6-week intranasal oxytocin (48IU/day, n = 53) or placebo (n = 53) group. One-hundred-three participants were analyzed. Since oxytocin reduced the primary endpoint, Autism Diagnostic Observation Schedule (ADOS) reciprocity, (from 8.5 to 7.7; P < .001) but placebo also reduced the score (8.3 to 7.2; P < .001), no between-group difference was found (effect size -0.08; 95% CI, -0.46 to 0.31; P = .69); however, plasma oxytocin was only elevated from baseline to endpoint in the oxytocin-group compared with the placebo-group (effect size -1.12; -1.53 to -0.70; P < .0001). Among the secondary endpoints, oxytocin reduced ADOS repetitive behavior (2.0 to 1.5; P < .0001) compared with placebo (2.0 to 1.8; P = .43) (effect size 0.44; 0.05 to 0.83; P = .026). In addition, the duration of gaze fixation on socially relevant regions, another secondary endpoint, was increased by oxytocin (41.2 to 52.3; P = .03) compared with placebo (45.7 to 40.4; P = .25) (effect size 0.55; 0.10 to 1.0; P = .018). No significant effects were observed for the other secondary endpoints. No significant difference in the prevalence of adverse events was observed between groups, although one participant experienced temporary gynecomastia during oxytocin administration. Based on the present findings, we cannot recommend continuous intranasal oxytocin treatment alone at the current dose and duration for treatment of the core social symptoms of high-functioning ASD in adult men, although this large-scale trial suggests oxytocin's possibility to treat ASD repetitive behavior.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Oxitocina/administración & dosificación , Oxitocina/uso terapéutico , Administración Intranasal , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Método Doble Ciego , Ginecomastia/inducido químicamente , Humanos , Japón , Masculino , Persona de Mediana Edad , Oxitocina/efectos adversos , Oxitocina/sangre , Adulto Joven
13.
Bioinformatics ; 35(17): 3092-3101, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649245

RESUMEN

MOTIVATION: Recent sequence-based analyses have identified a lot of gene variants that may contribute to neurogenetic disorders such as autism spectrum disorder and schizophrenia. Several state-of-the-art network-based analyses have been proposed for mechanical understanding of genetic variants in neurogenetic disorders. However, these methods were mainly designed for modeling and analyzing single networks that do not interact with or depend on other networks, and thus cannot capture the properties between interdependent systems in brain-specific tissues, circuits and regions which are connected each other and affect behavior and cognitive processes. RESULTS: We introduce a novel and efficient framework, called a 'Network of Networks' approach, to infer the interconnectivity structure between multiple networks where the response and the predictor variables are topological information matrices of given networks. We also propose Graph-Oriented SParsE Learning, a new sparse structural learning algorithm for network data to identify a subset of the topological information matrices of the predictors related to the response. We demonstrate on simulated data that propose Graph-Oriented SParsE Learning outperforms existing kernel-based algorithms in terms of F-measure. On real data from human brain region-specific functional networks associated with the autism risk genes, we show that the 'Network of Networks' model provides insights on the autism-associated interconnectivity structure between functional interaction networks and a comprehensive understanding of the genetic basis of autism across diverse regions of the brain. AVAILABILITY AND IMPLEMENTATION: Our software is available from https://github.com/infinite-point/GOSPEL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Encéfalo , Algoritmos , Trastorno del Espectro Autista , Redes Reguladoras de Genes , Humanos , Programas Informáticos
14.
Brain ; 142(7): 2127-2136, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096266

RESUMEN

Discrepancies in efficacy between single-dose and repeated administration of oxytocin for autism spectrum disorder have led researchers to hypothesize that time-course changes in efficacy are induced by repeated administrations of the peptide hormone. However, repeatable, objective, and quantitative measurement of autism spectrum disorder's core symptoms are lacking, making it difficult to examine potential time-course changes in efficacy. We tested this hypothesis using repeatable, objective, and quantitative measurement of the core symptoms of autism spectrum disorder. We examined videos recorded during semi-structured social interaction administered as the primary outcome in single-site exploratory (n = 18, crossover within-subjects design) and multisite confirmatory (n = 106, parallel-group design), double-blind, placebo-controlled 6-week trials of repeated intranasal administrations of oxytocin (48 IU/day) in adult males with autism spectrum disorder. The main outcomes were statistical representative values of objectively quantified facial expression intensity in a repeatable part of the Autism Diagnostic Observation Schedule: the maximum probability (i.e. mode) and the natural logarithm of mode on the probability density function of neutral facial expression and the natural logarithm of mode on the probability density function of happy expression. Our recent study revealed that increases in these indices characterize autistic facial expression, compared with neurotypical individuals. The current results revealed that oxytocin consistently and significantly decreased the increased natural logarithm of mode on the probability density function of neutral facial expression compared with placebo in exploratory (effect-size, -0.57; 95% CI, -1.27 to 0.13; P = 0.023) and confirmatory trials (-0.41; -0.62 to -0.20; P < 0.001). A significant interaction between time-course (at baseline, 2, 4, 6, and 8 weeks) and the efficacy of oxytocin on the natural logarithm of mode on the probability density function of neutral facial expression was found in confirmatory trial (P < 0.001). Post hoc analyses revealed maximum efficacy at 2 weeks (P < 0.001, Cohen's d = -0.78; 95% CI, -1.21 to -0.35) and deterioration of efficacy at 4 weeks (P = 0.042, Cohen's d = -0.46; 95% CI, -0.90 to -0.01) and 6 weeks (P = 0.10, Cohen's d = -0.35; 95% CI, -0.77 to 0.08), while efficacy was preserved at 2 weeks post-treatment (i.e. 8 weeks) (P < 0.001, Cohen's d = -1.24; 95% CI, -1.71 to -0.78). Quantitative facial expression analyses successfully verified the positive effects of repeated oxytocin on autistic individuals' facial expressions and demonstrated a time-course change in efficacy. The current findings support further development of an optimized regimen of oxytocin treatment.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/psicología , Expresión Facial , Oxitocina/administración & dosificación , Oxitocina/uso terapéutico , Administración Intranasal , Adolescente , Adulto , Estudios Cruzados , Método Doble Ciego , Humanos , Relaciones Interpersonales , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
15.
Psychiatry Clin Neurosci ; 74(3): 176-182, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31725933

RESUMEN

Kraepelin expected that the neuropathological hallmark of schizophrenia would be identified when he proposed the concept of dementia praecox 120 years ago. Although a variety of neuropathological findings have been reported since then, a consensus regarding the pathology of schizophrenia has not been established. The discrepancies have mainly been ascribed to limitations in the disease definition of schizophrenia that accompanies etiological heterogeneity and to the incompleteness of the visualization methodology and technology for biochemical analyses. However, macroscopic structural changes in the schizophrenia brain, such as volumetric changes of brain regions, must entail structural changes to cells composing the brain. This paper overviews neuropathology of schizophrenia and also summarizes recent application of synchrotron radiation nanotomography (nano-CT) to schizophrenia brain tissues. Geometric parameters of neurites determined from the 3-D nano-CT images of brain tissues indicated that the curvature of neurites in schizophrenia cases is significantly higher than that of controls. The schizophrenia case with the highest curvature carried a frameshift mutation in the glyoxalase 1 gene and exhibited treatment resistance. Controversies in the neuropathology of schizophrenia are mainly due to the difficulty in reproducing histological findings reported for schizophrenia. Nano-CT visualization using synchrotron radiation and subsequent geometric analysis should shed light on this long-standing question about the neuropathology of schizophrenia.


Asunto(s)
Encéfalo/patología , Neuritas/ultraestructura , Esquizofrenia/patología , Sincrotrones , Tomografía Computarizada por Rayos X , Encéfalo/diagnóstico por imagen , Humanos , Esquizofrenia/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos
16.
Psychiatry Clin Neurosci ; 74(1): 35-39, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31461559

RESUMEN

AIMS: Recent studies have revealed that the interplay between polygenic risk scores (PRS) and large copy number variants (CNV; >500kb) is essential for the etiology of schizophrenia (SCZ). To replicate previous findings, including those for smaller CNV (>10kb), the PRS between SCZ patients with and without CNV were compared. METHODS: The PRS were calculated for 724 patients with SCZ and 1178 healthy controls (HC), genotyped using array-based comparative genomic hybridization and single nucleotide polymorphisms chips, and comparisons were made between cases and HC, or between subjects with and without 'clinically significant' CNV. RESULTS: First, we replicated the higher PRS in patients with SCZ compared to that in HC (without taking into account the CNV). For clinically significant CNV, as defined by the American College of Medical Genetics ('pathogenic' and 'uncertain clinical significance, likely pathogenic' CNV), 66 patients with SCZ carried clinically significant CNV, whereas 658 SCZ patients had no such CNV. In the comparison of PRS between cases with/without the CNV, despite no significant difference in PRS, significant enrichment of the well-established risk CNV (22q11.2 deletion and 47,XXY/47,XXX) was observed in the lowest decile of PRS in SCZ patients with the CNV. CONCLUSION: Although the present study failed to replicate the significant difference in PRS between SCZ patients with and without clinically significant CNV, SCZ patients with well-established risk CNV tended to have a lower PRS. Therefore, we speculate that the CNV in SCZ patients with lower PRS may contain 'genuine' risk; PRS is a possible tool for prioritizing clinically significant CNV because the power of the CNV association analysis is limited due to their rarity.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética , Adulto , Humanos , Riesgo
17.
Psychiatry Clin Neurosci ; 74(5): 318-327, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32065683

RESUMEN

AIM: A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia. METHODS: A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed. RESULTS: The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice. CONCLUSION: The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.


Asunto(s)
Conducta Animal/fisiología , Moléculas de Adhesión Celular Neuronal , Cerebelo/patología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular , Proteínas del Tejido Nervioso , Neuronas/patología , Esquizofrenia/genética , Serina Endopeptidasas , Conducta Social , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Exones/genética , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Proteína Reelina , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
18.
PLoS Genet ; 12(5): e1005993, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153221

RESUMEN

Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.


Asunto(s)
Síndrome de Angelman/genética , Trastorno del Espectro Autista/genética , Herencia Paterna/genética , Síndrome de Prader-Willi/genética , Esquizofrenia/genética , Síndrome de Angelman/patología , Trastorno del Espectro Autista/patología , Duplicación Cromosómica/genética , Cromosomas Humanos Par 15/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Impresión Genómica/genética , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Síndrome de Prader-Willi/patología , Esquizofrenia/patología
19.
J Neurochem ; 147(3): 395-408, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30025158

RESUMEN

Myelinated axons segregate the axonal membrane into four defined regions: the node of Ranvier, paranode, juxtaparanode, and internode. The paranodal junction consists of specific component proteins, such as neurofascin155 (NF155) on the glial side, and Caspr and Contactin on the axonal side. Although paranodal junctions are thought to play crucial roles in rapid saltatory conduction and nodal assembly, the role of their interaction with neurons is not fully understood. In a previous study, conditional NF155 knockout in oligodendrocytes led to disorganization of the paranodal junctions. To examine if disruption of paranodal junctions affects neuronal gene expression, we prepared total RNA from the retina of NF155 conditional knockout, and performed expression analysis. We found that the expression level of 433 genes changed in response to paranodal junction ablation. Interestingly, expression of aquaporin 3 (AQP3) was significantly reduced in NF155 conditional knockout mice, but not in cerebroside sulfotransferase knockout (CST-KO) mice, whose paranodes are not originally formed during development. Copy number variations have an important role in the etiology of schizophrenia (SCZ). We observed rare duplications of AQP3 in SCZ patients, suggesting a correlation between abnormal AQP3 expression and SCZ. To determine if AQP3 over-expression in NF155 conditional knockout mice influences neuronal function, we performed adeno-associated virus (AAV)-mediated over-expression of AQP3 in the motor cortex of mice and found a significant increase in caspase 3-dependent neuronal apoptosis in AQP3-transduced cells. This study may provide new insights into therapeutic approaches for SCZ by regulating AQP3 expression, which is associated with paranodal disruption.


Asunto(s)
Acuaporina 3/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Animales , Axones/metabolismo , Axones/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Supervivencia Celular , Variaciones en el Número de Copia de ADN , Dependovirus/genética , Femenino , Duplicación de Gen , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Corteza Motora/metabolismo , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/genética , Neuronas/patología , Esquizofrenia/patología
20.
J Neurosci Res ; 96(5): 789-802, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29114925

RESUMEN

Migfilin, encoded by FBLIM1 at the 1p36 locus, is a multi-domain adaptor protein essential for various cellular processes such as cell morphology and migration. Small deletions and duplications at the 1p36 locus, monosomy of which results in neurodevelopmental disorders and multiple congenital anomalies, have also been identified in patients with autism spectrum disorder (ASD). However, the impact of FBLIM1, the gene within 1p36, on the pathogenesis of ASD is unknown. In this study, we performed morphological analyses of migfilin to elucidate its role in brain development. Migfilin was detected specifically in the embryonic and perinatal stages of the mouse brain. Either silencing or overexpression of migfilin in embryos following in utero electroporation disrupted Neocortical neuronal migration. Additionally, neurite elongation was impaired when migfilin was silenced in cultured mouse hippocampal neurons. We then screened FBLIM1 for rare exonic deletions/duplications in 549 Japanese ASD patients and 824 controls, detecting one case of ASD and intellectual delay that harbored a 26-kb deletion at 1p36.21 that solely included the C-terminal exon of FBLIM1. The FBLIM1 mRNA expression level in this case was reduced compared to levels in individuals without FBLIM1 deletion. Our findings indicate that tightly regulated expression of migfilin is essential for neuronal development and that FBLIM1 disruption may be related to the phenotypes associated with ASD and related neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular/genética , Proteínas del Citoesqueleto/genética , Adolescente , Adulto , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas del Citoesqueleto/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Embarazo , ARN Mensajero/metabolismo , Eliminación de Secuencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA