Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15708, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977755

RESUMEN

This study investigates the potential of platinum (Pt) decorated single-layer WSe2 (Pt-WSe2) monolayers as high-performance gas sensors for NO2, CO2, SO2, and H2 using first-principles calculations. We quantify the impact of Pt placement (basal plane vs. vertical edge) on WSe2's electronic properties, focusing on changes in bandgap (ΔEg). Pt decoration significantly alters the bandgap, with vertical edge sites (TV-WSe2) exhibiting a drastic reduction (0.062 eV) compared to pristine WSe2 and basal plane decorated structures (TBH: 0.720 eV, TBM: 1.237 eV). This substantial ΔEg reduction in TV-WSe2 suggests a potential enhancement in sensor response. Furthermore, TV-WSe2 displays the strongest binding capacity for all target gases due to a Pt-induced "spillover effect" that elongates adsorbed molecules. Specifically, TV-WSe2 exhibits adsorption energies of - 0.5243 eV (NO2), - 0.5777 eV (CO2), - 0.8391 eV (SO2), and - 0.1261 eV (H2), indicating its enhanced sensitivity. Notably, H2 adsorption on TV-WSe2 shows the highest conductivity modulation, suggesting exceptional H2 sensing capabilities. These findings demonstrate that Pt decoration, particularly along WSe2 vertical edges, significantly enhances gas sensing performance. This paves the way for Pt-WSe2 monolayers as highly selective and sensitive gas sensors for various applications, including environmental monitoring, leak detection, and breath analysis.

2.
RSC Adv ; 12(39): 25172-25193, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199310

RESUMEN

MXenes, are a rapidly growing family of two-dimensional materials exhibiting outstanding electronic, optical, mechanical, and thermal properties with versatile transition metal and surface chemistries. A wide range of transition metals and surface termination groups facilitate the properties of MXenes to be easily tuneable. Due to the physically strong and environmentally stable nature of MXenes, they have already had a strong presence in different fields, for instance energy storage, electrocatalysis, water purification, and chemical sensing. Some of the newly discovered applications of MXenes showed very promising results, however, they have not been covered in any review article. Therefore, in this review we comprehensively review the recent advancements of MXenes in various potential fields including energy conversion and storage, wearable flexible electronic devices, chemical detection, and biomedical engineering. We have also presented some of the most exciting prospects by combining MXenes with other materials and forming mixed dimensional high performance heterostructures based novel electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA