Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pharmacol Res ; 151: 104580, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786317

RESUMEN

Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.


Asunto(s)
Neuroinmunomodulación , Neutrófilos/inmunología , Animales , Humanos , Inmunidad Innata , Inflamación/inmunología , Neurotransmisores/inmunología , Nocicepción , Dolor/inmunología , Células Receptoras Sensoriales/inmunología
2.
J Clin Invest ; 132(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227694

RESUMEN

Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically. Mechanistically, it was found that IDO1-expressing dendritic cells (DCs) accumulated in the dorsal root leptomeninges and led to an increase in kynurenine levels in the spinal cord. In the spinal cord, kynurenine was metabolized by kynurenine-3-monooxygenase-expressing astrocytes into the pronociceptive metabolite 3-hydroxykynurenine. Ultimately, 3-hydroxyanthranilate 3,4-dioxygenase-derived quinolinic acid formed in the final step of the canonical KYNPATH was also involved in neuropathic pain development through the activation of the glutamatergic N-methyl-D-aspartate receptor. In conclusion, these data revealed a role for DCs driving neuropathic pain development through elevation of the KYNPATH. This paradigm offers potential new targets for drug development against this type of chronic pain.


Asunto(s)
Quinurenina , Neuralgia , Animales , Ratones , Quinurenina/metabolismo , Ácido Quinolínico/metabolismo , Redes y Vías Metabólicas , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
3.
Mol Pain ; 7: 17, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21385380

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation. RESULTS: Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression. CONCLUSIONS: Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.


Asunto(s)
MicroARNs/genética , Dolor/genética , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ratones , Ratones Endogámicos BALB C , Células del Asta Posterior/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33771873

RESUMEN

Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.

5.
Brain Res ; 1727: 146567, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31783002

RESUMEN

New findings on neural regulation of immunity are allowing the design of novel pharmacological strategies to control inflammation and nociception. Herein, we report that choline, a 7-nicotinic acetylcholine receptor (α7nAChRs) agonist, prevents carrageenan-induced hyperalgesia without affecting inflammatory parameters (neutrophil migration or cytokine/chemokines production) or inducing sedation or even motor impairment. Choline also attenuates prostaglandin-E2 (PGE2)-induced hyperalgesia via α7nAChR activation and this antinociceptive effect was abrogated by administration of LNMMA (a nitric oxide synthase inhibitor), ODQ (an inhibitor of soluble guanylate cyclase; cGMP), andglibenclamide(an inhibitor of ATP-sensitive potassium channels). Furthermore, choline attenuates long-lasting Complete Freund's Adjuvant and incision-induced hyperalgesia suggesting its therapeutic potential to treat pain in rheumatoid arthritis or post-operative recovery, respectively. Our results suggest that choline modulates inflammatory hyperalgesia by activating the nitric oxide/cGMP/ATP-sensitive potassium channels without interfering in inflammatory events, and could be used in persistent pain conditions.


Asunto(s)
Colina/farmacología , GMP Cíclico/metabolismo , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Canales KATP/metabolismo , Óxido Nítrico/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Colina/uso terapéutico , Dinoprostona/metabolismo , Adyuvante de Freund , Masculino , Ratones , Ratones Endogámicos BALB C
6.
Pain ; 161(8): 1730-1743, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32701834

RESUMEN

The inflammatory/immune response at the site of peripheral nerve injury participates in the pathophysiology of neuropathic pain. Nevertheless, little is known about the local regulatory mechanisms underlying peripheral nerve injury that counteracts the development of pain. Here, we investigated the contribution of regulatory T (Treg) cells to the development of neuropathic pain by using a partial sciatic nerve ligation model in mice. We showed that Treg cells infiltrate and proliferate in the site of peripheral nerve injury. Local Treg cells suppressed the development of neuropathic pain mainly through the inhibition of the CD4 Th1 response. Treg cells also indirectly reduced neuronal damage and neuroinflammation at the level of the sensory ganglia. Finally, we identified IL-10 signaling as an intrinsic mechanism by which Treg cells counteract neuropathic pain development. These results revealed Treg cells as important inhibitory modulators of the immune response at the site of peripheral nerve injury that restrains the development of neuropathic pain. In conclusion, the boosting of Treg cell function/activity might be explored as a possible interventional approach to reduce neuropathic pain development after peripheral nerve damage.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Linfocitos T Reguladores , Animales , Hiperalgesia , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/complicaciones , Nervio Ciático , Células TH1
7.
Neurol Res ; 41(7): 633-643, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31002029

RESUMEN

Objective: Animal models of chronic pain have demonstrated that glial cells are promising target for development of analgesic drugs. However, preclinical studies on glial response under chronic pain conditions vary depending on the cellular markers, the species used, the experimental design and model. Therefore, we investigate the expression profile of GFAP and Iba-1 during the behavioral manifestation of sensory disorder in inflammatory and neuropathic pain models. Methods: the expression profile of fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) were quantitated in the spinal dorsal horn of Balb/C mice submitted to six models of chronic pain. Protein analysis was performed by western blot and the results colligated with pain-related behavior. Results: Using the same method to quantitate proteins we observed that while GFAP is upregulated after axotomy, partial nerve injury and cutaneous inflammation, its expression is not changed during muscle inflammation, non-inflammatory muscle pain, and in a viral-associated pain. Differently, Iba-1 is downregulated after axotomy but upregulated after partial lesion of peripheral nerve as well as after virus inoculation and during non-inflammatory muscle pain. Cutaneous and muscle inflammation induced no change in Iba-1 expression in the dorsal horn.In spite of a marked time-dependent variation in protein expression, mechanical allodynia was present at any time of all the models investigated. Discussion: Under distinct pain conditions, GFAP and Iba-1 expression is dependent on the origin of the stimulus, disease progression and tissue affected. Moreover, their expression and is not necessarily associated to the behavior manifestation of pain.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Dolor Crónico/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Inflamación/metabolismo , Proteínas de Microfilamentos/biosíntesis , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Inflamación/complicaciones , Inflamación/fisiopatología , Masculino , Ratones , Músculos/fisiopatología , Nervio Ciático/lesiones , Piel/fisiopatología , Regulación hacia Arriba
8.
Front Immunol ; 10: 3059, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32047492

RESUMEN

Neuroimmune-glia interactions have been implicated in the development of neuropathic pain. Interleukin-27 (IL-27) is a cytokine that presents regulatory activity in inflammatory conditions of the central nervous system. Thus, we hypothesized that IL-27 would participate in the neuropathic pain process. Here, we found that neuropathic pain caused by peripheral nerve injury (spared nerve injury model; SNI), was enhanced in IL-27-deficient(-/-) mice, whereas nociceptive pain is similar to that of wild-type mice. SNI induced an increase in the expression of IL-27 and its receptor subunit (Wsx1) in the sensory ganglia and spinal cord. IL-27 receptor was expressed mainly in resident macrophage, microglia, and astrocytes of the sensory ganglia and spinal cord, respectively. Finally, we identify that the antinociceptive effect of IL-27 was not observed in IL-10-/- mice. These results provided evidence that IL-27 is a cytokine produced after peripheral nerve injury that counteracts neuropathic pain development through induction of the antinociceptive cytokine IL-10. In summary, our study unraveled the role of IL-27 as a regulatory cytokine that counteracts the development of neuropathic pain after peripheral nerve damage. In conclusion, they indicate that immunotherapies based on IL-27 could emerge as possible therapeutic approaches for the prevention of neuropathic pain development after peripheral nerve injury.


Asunto(s)
Susceptibilidad a Enfermedades , Interleucina-10/metabolismo , Interleucina-27/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales , Interleucina-27/genética , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
9.
Mol Neurobiol ; 56(8): 5715-5728, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30674034

RESUMEN

Small nerve fibers that bind the isolectin B4 (IB4+ C-fibers) are a subpopulation of primary afferent neurons that are involved in nociceptive sensory transduction and do not express the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Several studies have attempted to elucidate the functional role of IB4+-nociceptors in different models of pain. However, a functional characterization of the non-peptidergic nociceptors in mediating mechanical inflammatory hypersensitivity in mice is still lacking. To this end, in the present study, the neurotoxin IB4-Saporin (IB4-Sap) was employed to ablate non-peptidergic C-fibers. Firstly, we showed that intrathecal (i.t.) administration of IB4-Sap in mice depleted non-peptidergic C-fibers, since it decreased the expression of purinoceptor 3 (P2X3) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the dorsal root ganglia (DRGs) as well as IB4 labelling in the spinal cord. Non-peptidergic C-fibers depletion did not alter the mechanical nociceptive threshold, but it inhibited the mechanical inflammatory hypersensitivity induced by glial cell-derived neurotrophic factor (GDNF), but not nerve growth factor (NGF). Depletion of non-peptidergic C-fibers abrogated mechanical inflammatory hypersensitivity induced by carrageenan. Finally, it was found that the inflammatory mediators PGE2 and epinephrine produced a mechanical inflammatory hypersensitivity that was also blocked by depletion of non-peptidergic C-fibers. These data suggest that IB4-positive nociceptive nerve fibers are not involved in normal mechanical nociception but are sensitised by inflammatory stimuli and play a crucial role in mediating mechanical inflammatory hypersensitivity.


Asunto(s)
Hipersensibilidad/patología , Inflamación/patología , Nociceptores/patología , Péptidos/metabolismo , Animales , Dinoprostona/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Hipersensibilidad/complicaciones , Hipersensibilidad/fisiopatología , Inflamación/complicaciones , Inflamación/fisiopatología , Lectinas/farmacología , Masculino , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/metabolismo , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Dolor/complicaciones , Dolor/fisiopatología , Saporinas/farmacología
10.
J Leukoc Biol ; 106(3): 541-551, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31150565

RESUMEN

The development of neuropathic pain after peripheral nerve injury involves neuroimmune-glial interactions in the spinal cord. However, whether the development of neuropathic pain depends on the infiltration of peripheral immune cells, such as monocytes, into the spinal cord parenchyma after peripheral nerve damage remains unclear. Here, we used a combination of different techniques such as transgenic reporter mouse (Cx3cr1GFP/+ and Ccr2RFP/+ mice), bone marrow chimeric mice, and parabiosis to investigate this issue in spared nerve injury (SNI) model. Herein, we provided robust evidence that, although microglial cells are activated/proliferate at the dorsal horn of the spinal cord after SNI, peripheral hematopoietic cells (including monocytes) are not able to infiltrate into the spinal cord parenchyma. Furthermore, there was no evidence of CCR2 expression in intrinsic cells of the spinal cord. However, microglial cells activation/proliferation in the spinal cord and mechanical allodynia after SNI were reduced in Ccr2-deficient mice. These results suggest that blood-circulating leukocytes cells are not able to infiltrate the spinal cord parenchyma after distal peripheral nerve injury. Nevertheless, they indicate that CCR2-expressing cells might be indirectly regulating microglia activation/proliferation in the spinal cord after SNI. In conclusion, our study supports that CCR2 inhibition could be explored as an interventional approach to reduce microglia activation and consequently neuropathic pain development after peripheral nerve injury.


Asunto(s)
Leucocitos/patología , Traumatismos de los Nervios Periféricos/sangre , Traumatismos de los Nervios Periféricos/patología , Médula Espinal/patología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Endotelio Vascular/patología , Femenino , Células Madre Hematopoyéticas/metabolismo , Hiperalgesia/sangre , Hiperalgesia/complicaciones , Hiperalgesia/inmunología , Hiperalgesia/patología , Masculino , Ratones Endogámicos C57BL , Microglía/patología , Monocitos/patología , Neuralgia/sangre , Neuralgia/complicaciones , Neuralgia/inmunología , Neuralgia/patología , Receptores CCR2/deficiencia , Receptores CCR2/metabolismo
11.
Pain ; 160(1): 102-116, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30169421

RESUMEN

Neuropathic pain is one of the most important types of chronic pain. It is caused by neuronal damage. Clinical and experimental studies suggest a critical role for neuroimmune interactions in the development of neuropathic pain. In this article, we have shown that the cytoplasmic receptor Nod-like receptor-2, NOD2, and its adaptor-signaling molecule RIPK2 participate in the development of neuropathic pain after peripheral nerve injury (spared nerve injury model). The activation of NOD2 signaling in peripheral macrophage mediates the development of neuropathic pain through the production of pronociceptive cytokines (tumor necrosis factor and IL-1ß). This study found that peripheral nerve injury promoted a systemic increase in the NOD2 ligand. These results highlight a previously undetermined role for NOD2 signaling in the development of neuropathic pain, suggesting a new potential target for preventing neuropathic pain.


Asunto(s)
Macrófagos/metabolismo , Neuralgia/patología , Neuralgia/fisiopatología , Proteína Adaptadora de Señalización NOD2/metabolismo , Animales , Trasplante de Médula Ósea , Carragenina/toxicidad , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/terapia , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Minociclina/uso terapéutico , Neuralgia/genética , Neuralgia/cirugía , Fármacos Neuroprotectores/uso terapéutico , Proteína Adaptadora de Señalización NOD2/genética , ARN Interferente Pequeño/uso terapéutico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Xantinas/uso terapéutico
12.
Cell Rep ; 21(6): 1681-1691, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117570

RESUMEN

Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.


Asunto(s)
Nocicepción/efectos de los fármacos , Oxitocina/farmacología , Canales Catiónicos TRPV/genética , Animales , Calcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacología , Células Cultivadas , Potenciales Evocados/efectos de los fármacos , Femenino , Ganglios Espinales/citología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estructura Cuaternaria de Proteína , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
13.
Sci Rep ; 6: 26955, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230787

RESUMEN

Peripheral neuropathic pain is a consequence of an injury/disease of the peripheral nerves. The mechanisms involved in its pathophysiology are not entirely understood. To better understand the mechanisms involved in the development of peripheral nerve injury-induced neuropathic pain, more experimental models are required. Here, we developed a novel peripheral neuropathic pain model in mice by using a minimally invasive surgery and medial plantar nerve ligation (MPNL). After MPNL, mechanical allodynia was established, and mice quickly recovered from the surgery without any significant motor impairment. MPNL causes an increased expression of ATF-3 in the sensory neurons. At 14 days after surgery, gabapentin was capable of reversing the mechanical allodynia, whereas anti-inflammatory drugs and opioids were ineffective. MPNL-induced neuropathic pain was mediated by glial cells activation and the production of TNF-α and IL-6 in the spinal cord. These results indicate MPNL as a reasonable animal model for the study of peripheral neuropathic pain, presenting analgesic pharmacological predictivity to clinically used drugs. The results also showed molecular phenotypic changes similar to other peripheral neuropathic pain models, with the advantage of a lack of motor impairment. These features indicate that MPNL might be more appropriate for the study of neuropathic pain than classical models.


Asunto(s)
Modelos Animales de Enfermedad , Hiperalgesia/fisiopatología , Actividad Motora/fisiología , Neuralgia/fisiopatología , Nervio Tibial/fisiopatología , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Aminas/farmacología , Analgésicos/farmacología , Animales , Ácidos Ciclohexanocarboxílicos/farmacología , Gabapentina , Regulación de la Expresión Génica , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/prevención & control , Interleucina-6/genética , Interleucina-6/metabolismo , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Nervio Tibial/efectos de los fármacos , Nervio Tibial/lesiones , Nervio Tibial/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ácido gamma-Aminobutírico/farmacología
14.
Sci Rep ; 5: 14648, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26511791

RESUMEN

The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blotting and real-time PCR were used to determine protein and mRNA expression, respectively. DWB detected a dose- and time-dependent increase in joint nociception during AIA and was able to detect the dose-response effects of different classes of analgesics. Using DWB, it was possible to evaluate the participation of spinal glial cells (microglia and astrocytes) and cytokines (IL-1ß and TNFα) for the genesis of joint nociception during AIA. In conclusion, the present results indicated that DWB is an effective, objective and predictable test to study both the pathophysiological mechanisms involved in arthritic nociception in mice and for evaluating novel analgesic drugs against arthritis.


Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/fisiopatología , Astrocitos/inmunología , Microglía/inmunología , Nocicepción , Analgésicos/farmacología , Animales , Artritis Experimental/patología , Astrocitos/patología , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/patología , Factor de Necrosis Tumoral alfa/inmunología , Soporte de Peso
15.
Pain ; 156(3): 504-513, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25687543

RESUMEN

Treatment of neuropathic pain is a clinical challenge likely because of the time-dependent changes in many neurotransmitter systems, growth factors, ionic channels, membrane receptors, transcription factors, and recruitment of different cell types. Conversely, an increasing number of reports have shown the ability of extended and regular physical exercise in alleviating neuropathic pain throughout a wide range of mechanisms. In this study, we investigate the effect of swim exercise on molecules associated with initiation and maintenance of nerve injury-induced neuropathic pain. BALB/c mice were submitted to partial ligation of the sciatic nerve followed by a 5-week aerobic exercise program. Physical training reversed mechanical hypersensitivity, which lasted for an additional 4 weeks after exercise interruption. Swim exercise normalized nerve injury-induced nerve growth factor, and brain-derived neurotrophic factor (BDNF) enhanced expression in the dorsal root ganglion, but had no effect on the glial-derived neurotrophic factor. However, only BDNF remained at low levels after exercise interruption. In addition, exercise training significantly reduced the phosphorylation status of PLCγ-1, but not CREB, in the spinal cord dorsal horn in response to nerve injury. Finally, prolonged swim exercise reversed astrocyte and microglia hyperactivity in the dorsal horn after nerve lesion, which remained normalized after training cessation. Together, these results demonstrate that exercise therapy induces long-lasting analgesia through various mechanisms associated with the onset and advanced stages of neuropathy. Moreover, the data support further studies to clarify whether appropriate exercise intensity, volume, and duration can also cause long-lasting pain relief in patients with neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Terapia por Ejercicio/métodos , Neuralgia/rehabilitación , Neuroglía/metabolismo , Regulación hacia Arriba/fisiología , Adaptación Fisiológica , Animales , Proteína de Unión a CREB/metabolismo , Citrato (si)-Sintasa , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Corazón/fisiopatología , Hiperalgesia/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Esquelético/fisiopatología , Neuralgia/complicaciones , Neuralgia/patología , Neuroglía/patología , Dimensión del Dolor , Umbral del Dolor/fisiología , Fosfolipasa C gamma/metabolismo , Fosforilación , Factores de Tiempo
16.
J Pain ; 14(10): 1162-72, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23816950

RESUMEN

UNLABELLED: The effect of long-term administration of imipramine, a tricyclic antidepressant, on the phosphorylation status of cyclic adenosine monophosphate-responsive element-binding protein (CREB), mitogen-activated protein kinase family members, and phospholipase γ-1 (PLCγ-1) was investigated in the dorsal horn of the spinal cord following peripheral nerve lesion. Nerve injury induced an ipsilateral long-lasting increased phosphorylation of CREB and PLCγ-1 but not extracellular signal-regulated kinase (ERK1,2), p38, and c-Jun N-terminal kinase. Daily administration of imipramine (5, 10, or 30 mg/kg) for 21 days progressively reduced both tactile-induced neuropathic pain hypersensitivity and thermal hyperalgesia. After withdrawal of treatment, the antinociceptive effect of imipramine was gradually abolished but still remained for at least 3 weeks. Conversely, no analgesic effect was observed with short-term imipramine treatment. Moreover, imipramine therapy reversed nerve injury-induced CREB and PLCγ-1 phosphorylation but had no effect on ERK1,2, p38, and c-Jun N-terminal kinase activity. These results indicate that long-term administration of imipramine may prevent some of the harmful changes in the spinal cord dorsal horn following nerve injury. However, imipramine analgesic effect takes time to develop and mature, which might explain in part why the clinical analgesic effect of tricyclic antidepressants develops with a delay after the beginning of treatment. Our data also provide evidence that prolonged imipramine treatment may induce antinociception in neuropathic pain conditions because of its action on the PLCγ-1/CREB-signaling pathway. PERSPECTIVE: This article demonstrates that long-term treatment with imipramine reverses some of the marked effects induced by peripheral nerve injury in the spinal dorsal horn that contribute to long-term maintenance of sensory disorder, providing a new view to the mechanisms of action of these drugs.


Asunto(s)
Antidepresivos/uso terapéutico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Fosfolipasa C gamma/metabolismo , Células del Asta Posterior/metabolismo , Animales , Antidepresivos Tricíclicos/uso terapéutico , Conducta Animal/efectos de los fármacos , Western Blotting , Imipramina/uso terapéutico , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Dimensión del Dolor/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ciática/tratamiento farmacológico , Ciática/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA