Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(5): 1516-1528, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30514757

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2 When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a "priming reduction" reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (KmRapp). Theoretical analyses revealed that KmRapp decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Peróxido de Hidrógeno/farmacología , Oxigenasas de Función Mixta/metabolismo , Polisacáridos Bacterianos/metabolismo , Sustancias Reductoras/farmacología , Cinética , Oxidantes/farmacología , Oxidación-Reducción , Especificidad por Sustrato
2.
J Biol Chem ; 293(2): 523-531, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29138240

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, and are of interest in biotechnological utilization of these abundant biomaterials. It has recently been shown that LPMOs can use H2O2, instead of O2, as a cosubstrate. This peroxygenase-like reaction by a monocopper enzyme is unprecedented in nature and opens new avenues in chemistry and enzymology. Here, we provide the first detailed kinetic characterization of chitin degradation by the bacterial LPMO chitin-binding protein CBP21 using H2O2 as cosubstrate. The use of 14C-labeled chitin provided convenient and sensitive detection of the released soluble products, which enabled detailed kinetic measurements. The kcat for chitin oxidation found here (5.6 s-1) is more than an order of magnitude higher than previously reported (apparent) rate constants for reactions containing O2 but no added H2O2 The kcat/Km for H2O2-driven degradation of chitin was on the order of 106 m-1 s-1, indicating that LPMOs have catalytic efficiencies similar to those of peroxygenases. Of note, H2O2 also inactivated CBP21, but the second-order rate constant for inactivation was about 3 orders of magnitude lower than that for catalysis. In light of the observed CBP21 inactivation at higher H2O2 levels, we conclude that controlled generation of H2O2in situ seems most optimal for fueling LPMO-catalyzed oxidation of polysaccharides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos Bacterianos/metabolismo , Cinética
3.
J Biol Chem ; 290(48): 29074-85, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26468285

RESUMEN

Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.


Asunto(s)
Proteínas Bacterianas/química , Quitina/química , Quitinasas/química , Modelos Químicos , Serratia marcescens/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Mutación Missense , Unión Proteica , Serratia marcescens/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA