Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 63(6): 806-814, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38422553

RESUMEN

In the field of medical chemistry and other organic chemistry, introducing a methyl group into a designed position has been difficult to achieve. However, owing to the vigorous developments in the field of enzymology, methyltransferases are considered potential tools for addressing this problem. Within the methyltransferase family, Fur6 catalyzes the methylation of C3 of 1,2,4,5,7-pentahydroxynaphthalene (PHN) using S-adenosyl-l-methionine (SAM) as the methyl donor. Here, we report the catalytic mechanism and substrate specificity of Fur6 based on computational studies. Our molecular dynamics (MD) simulation studies reveal the reactive form of PHN and its interactions with the enzyme. Our hybrid quantum mechanics/molecular mechanics (QM/MM) calculations suggest the reaction pathway of the methyl transfer step in which the energy barrier is 8.6 kcal mol-1. Our free-energy calculations with a polarizable continuum model (PCM) indicate that the final deprotonation step of the methylated intermediate occurs after it is ejected into the water solvent from the active center pocket of Fur6. Additionally, our studies on the protonation states, the highest occupied molecular orbital (HOMOs), and the energy barriers of the methylation reaction for the analogs of PHN demonstrate the mechanism of the specificity to PHN. Our study provides valuable insights into Fur6 chemistry, contributing to a deeper understanding of molecular mechanisms and offering an opportunity to engineer the enzyme to achieve high yields of the desired product(s).


Asunto(s)
Metiltransferasas , Simulación de Dinámica Molecular , Metiltransferasas/metabolismo , Especificidad por Sustrato , Catálisis , Metilación , Teoría Cuántica
2.
Biochemistry ; 62(12): 1833-1837, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37167424

RESUMEN

The hydroxyamidotransferase TsnB9 catalyzes hydroxylamine transfer from l-glutamic acid γ-monohydroxamate to the carboxyl group of trichostatic acid to produce the terminal hydroxamic acid group of trichostatin A, which is a potent inhibitor of histone deacetylase (HDAC). The reaction catalyzed by TsnB9 is similar to that catalyzed by glutamine-dependent asparagine synthetase, but the trichostatic acid recognition mechanism remains unclear. Here, we determine the crystal structure of TsnB9 composed of the N-terminal glutaminase domain and the C-terminal synthetase domain. Two consecutive phenylalanine residues, which are not found in glutamine-dependent asparagine synthetase, in the N-terminal glutaminase domain structurally form the bottom of the hydrophobic pocket in the C-terminal synthetase domain. Mutational and computational analyses of TsnB9 suggest five aromatic residues, including the two consecutive phenylalanine residues, in the hydrophobic pocket are important for the recognition of the dimethylaniline moiety of trichostatic acid. These insights lead us to the discovery of hydroxyamidotransferase to produce terminal hydroxamic acid group-containing HDAC inhibitors different from trichostatin A.


Asunto(s)
Aspartatoamoníaco Ligasa , Glutaminasa , Glutamina , Ácidos Hidroxámicos/química , Proteínas , Inhibidores de Histona Desacetilasas/farmacología , Fenilalanina
3.
J Am Chem Soc ; 144(12): 5435-5440, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293722

RESUMEN

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are a group of versatile enzymes that catalyze various reactions, but only a small number of them react with O2. Here, we report an unprecedented PLP-dependent enzyme, NphE, that catalyzes both transamination and two-electron oxidation using O2 as an oxidant. Our intensive analysis reveals that NphE transfers the l-glutamate-derived amine to 1,3,6,8-tetrahydroxynaphthalene-derived mompain to form 8-amino-flaviolin (8-AF) via a highly conjugated quinonoid intermediate that is reactive with O2. During the NphE reaction, O2 is reduced to yield H2O2. An integrated technique involving NphE structure prediction by AlphaFold v2.0 and molecular dynamics simulation suggested the O2-accessible cavity. Our in vivo results demonstrated that 8-AF is a genuine biosynthetic intermediate for the 1,3,6,8-tetrahydroxynaphthalene-derived meroterpenoid naphterpin without an amino group, which was supported by site-directed mutagenesis. This study clearly establishes the NphE reaction product 8-AF as a common intermediate with a cryptic amino group for the biosynthesis of terpenoid-polyketide hybrid natural products.


Asunto(s)
Productos Biológicos , Peróxido de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Fosfato de Piridoxal/química
4.
J Am Chem Soc ; 144(37): 16715-16719, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36067081

RESUMEN

Phosphonates often exhibit biological activities by mimicking the phosphates and carboxylates of biological molecules. The phosphonate phosphonothrixin (PTX), produced by the soil-dwelling bacterium Saccharothrix sp. ST-888, exhibits herbicidal activity. In this study, we propose a complete biosynthetic pathway for PTX by reconstituting its biosynthesis in vitro. Our intensive analysis demonstrated that two dehydrogenases together reduce phosphonopyruvate (PnPy) to 2-hydroxy-3-phosphonopropanoic acid (HPPA) to accelerate the thermodynamically unfavorable rearrangement of phosphoenolpyruvate (PEP) to PnPy. The next four enzymes convert HPPA to (3-hydroxy-2-oxopropyl)phosphonic acid (HOPA). In the final stage of PTX biosynthesis, the "split-gene" transketolase homologue, PtxB5/6, catalyzes the transfer of a two-carbon unit attached to the thiamine diphosphate (TPP) cofactor (provided by the acetohydroxyacid synthase homologue, PtxB7) to HOPA to produce PTX. This study reveals a unique C-C bond formation in which two distinct TPP-dependent enzymes, PtxB5/6 and PtxB7, divide the work to transfer an acetyl group, highlighting an unprecedented biosynthetic strategy for natural products.


Asunto(s)
Productos Biológicos , Organofosfonatos , Bacterias/metabolismo , Vías Biosintéticas , Carbono , Organofosfonatos/química , Oxidorreductasas/metabolismo , Fosfatos , Fosfoenolpiruvato , Suelo , Tiamina Pirofosfato , Transcetolasa/metabolismo
5.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998388

RESUMEN

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Asunto(s)
Aziridinas , Sulfatos , Aziridinas/química , ADN/química , Mitomicina
6.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042199

RESUMEN

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Asunto(s)
Biotina/biosíntesis , Oxidorreductasas/ultraestructura , Synechocystis/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/metabolismo , Catálisis , Clonación Molecular , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxidorreductasas/metabolismo , Synechocystis/genética , Transaminasas/metabolismo
7.
Angew Chem Int Ed Engl ; 61(14): e202200818, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35142022

RESUMEN

A collective total synthesis of eight diastereoisomers associated with NMR analysis leads to a full stereochemistry assignment of the structurally unique nucleoside antibiotic A-94964, which features an octuronic acid uridine core decorated with an α-D-mannopyranosyl residue and an α-D-N-acylglucosaminopyranosyl residue via a phosphodiester bridge.


Asunto(s)
Antibacterianos , Nucleósidos , Antibacterianos/química , Antibacterianos/farmacología , Disacáridos , Espectroscopía de Resonancia Magnética , Nucleósidos/química , Nucleótidos de Pirimidina , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 61(20): e202117430, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35235232

RESUMEN

Some enzymes annotated as squalene synthase catalyze the prenylation of carbazole-3,4-quinone-containing substrates in bacterial secondary metabolism. Their reaction mechanisms remain unclear because of their low sequence similarity to well-characterized aromatic substrate prenyltransferases (PTs). We determined the crystal structures of the carbazole PTs, and these revealed that the overall structure is well superposed on those of squalene synthases. In contrast, the stacking interaction between the prenyl donor and acceptor substrates resembles those observed in aromatic substrate PTs. Structural and mutational analyses suggest that the Ile and Asp residues are essential for the hydrophobic and hydrophilic interactions with the carbazole-3,4-quinone moiety of the prenyl acceptor, respectively, and a deprotonation mechanism of an intermediary σ-complex involving a catalytic triad is proposed. Our results provide a structural basis for a new subclass of aromatic substrate PTs.


Asunto(s)
Productos Biológicos , Dimetilaliltranstransferasa , Carbazoles , Catálisis , Dimetilaliltranstransferasa/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Prenilación , Quinonas , Especificidad por Sustrato
9.
J Am Chem Soc ; 143(7): 2962-2969, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576619

RESUMEN

Natural products containing an o-dialkylbenzene moiety exhibit a wide variety of bioactivities, including antibacterial, antifungal, antitumor, and antiangiogenic activities. However, the biosynthetic scheme of the o-dialkylbenzene moiety remains unclear. In this study, we identified the biosynthetic gene cluster (BGC) of compounds 1 and 2 in Streptomyces sp. SANK 60404, which contains a rare o-dialkylbenzene moiety, and successfully reconstituted the biosynthesis of 1 using 22 recombinant enzymes in vitro. Our study established a biosynthetic route for the o-tolyl group within the o-dialkylbenzene moiety, where the triene intermediate 3 loaded onto a unique acyl carrier protein (ACP) is elongated by a specific ketosynthase-chain length factor pair of a type II polyketide synthase system with the aid of a putative isomerase to be termed "electrocyclase" and a thioesterase-like enzyme in the BGC. The C2-elongated all-trans diketo-triene intermediate is subsequently isomerized to the 6Z configuration by the electrocyclase to allow intramolecular 6π-electrocyclization, followed by coenzyme FAD/FMN-dependent dehydrogenation. Bioinformatics analysis showed that the key genes are all conserved in BGCs of natural products containing an o-dialkylbenzene moiety, suggesting that the proposed biosynthetic scheme is a common strategy to form o-dialkylbenzenes in nature.


Asunto(s)
Benceno/química , Productos Biológicos/metabolismo , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos/química , Ciclización , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptomyces/metabolismo
10.
Biosci Biotechnol Biochem ; 85(1): 42-52, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577658

RESUMEN

Phosphonates are organophosphorus compounds possessing a characteristic C-P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C-P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.


Asunto(s)
Productos Biológicos/metabolismo , Enzimas/metabolismo , Fosfomicina/biosíntesis , Productos Biológicos/química , Fosfomicina/química
11.
Org Biomol Chem ; 18(27): 5137-5144, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32582897

RESUMEN

The 1-azabicyclo[3.1.0]hexane ring is a key moiety in natural products for biological activities against bacteria, fungi, and tumor through DNA alkylation. Ficellomycin is a dipeptide that consists of l-valine and a non-proteinogenic amino acid with the 1-azabicyclo[3.1.0]hexane ring structure. Although the biosynthetic gene cluster of ficellomycin has been identified, the biosynthetic pathway currently remains unclear. We herein report the final stage of ficellomycin biosynthesis involving ring modifications and successive dipeptide formation. After the ring is formed, the hydroxy group of the ring is converted into the guanidyl unit by three enzymes, which include an aminotransferase with a novel inter ω-ω amino-transferring activity. In the last step, the resulting 1-azabicyclo[3.1.0]hexane ring-containing amino acid is connected with l-valine by an amino acid ligase to yield ficellomycin. The present study revealed a new machinery that expands the structural and biological diversities of natural products.


Asunto(s)
Compuestos de Azabiciclo/química , Guanidina/química , Hexanos/química , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Relación Estructura-Actividad
12.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036724

RESUMEN

Glutamate dehydrogenase (GDH) from a thermophilic bacterium, Thermus thermophilus, is composed of two heterologous subunits, GdhA and GdhB. In the heterocomplex, GdhB acts as the catalytic subunit, whereas GdhA lacks enzymatic activity and acts as the regulatory subunit for activation by leucine. In the present study, we performed a pulldown assay using recombinant T. thermophilus, producing GdhA fused with a His tag at the N terminus, and found that TTC1249 (APRTh), which is annotated as adenine phosphoribosyltransferase but lacks the enzymatic activity, was copurified with GdhA. When GdhA, GdhB, and APRTh were coproduced in Escherichia coli cells, they were purified as a ternary complex. The ternary complex exhibited GDH activity that was activated by leucine, as observed for the GdhA-GdhB binary complex. Furthermore, AMP activated GDH activity of the ternary complex, whereas such activation was not observed for the GdhA-GdhB binary complex. This suggests that APRTh mediates the allosteric activation of GDH by AMP. The present study demonstrates the presence of complicated regulatory mechanisms of GDH mediated by multiple compounds to control the carbon-nitrogen balance in bacterial cells.IMPORTANCE GDH, which catalyzes the synthesis and degradation of glutamate using NAD(P)(H), is a widely distributed enzyme among all domains of life. Mammalian GDH is regulated allosterically by multiple metabolites, in which the antenna helix plays a key role to transmit the allosteric signals. In contrast, bacterial GDH was believed not to be regulated allosterically because it lacks the antenna helix. We previously reported that GDH from Thermus thermophilus (TtGDH), which is composed of two heterologous subunits, is activated by leucine. In the present study, we found that AMP activates TtGDH using a catalytically inactive APRTh as the sensory subunit. This suggests that T. thermophilus possesses a complicated regulatory mechanism of GDH to control carbon and nitrogen metabolism.


Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Glutamato Deshidrogenasa/metabolismo , Leucina/metabolismo , Thermus thermophilus/enzimología , Adenina Fosforribosiltransferasa/genética , Proteínas Bacterianas/genética , Catálisis , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glutamato Deshidrogenasa/genética , Ácido Glutámico/metabolismo , Thermus thermophilus/genética
13.
J Am Chem Soc ; 141(36): 14152-14159, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31150226

RESUMEN

Peptidyl nucleoside antibiotics (PNAs) are a diverse class of natural products with promising biomedical activities. These compounds have tripartite structures composed of a core saccharide, a nucleobase, and one or more amino acids. In particular, amipurimycin and the miharamycins are novel 2-aminopurinyl PNAs with complex nine-carbon core saccharides and include the unusual amino acids (-)-cispentacin and N5-hydroxyarginine, respectively. Despite their interesting structures and properties, these PNAs have heretofore eluded biochemical scrutiny. Herein is reported the discovery and initial characterization of the miharamycin gene cluster in Streptomyces miharaensis (mhr) and the amipurimycin gene cluster (amc) in Streptomyces novoguineensis and Streptomyces sp. SN-C1. The gene clusters were identified using a comparative genomics approach, and heterologous expression of the amc cluster as well as gene interruption experiments in the mhr cluster support their role in the biosynthesis of amipurimycin and the miharamycins, respectively. The mhr and amc biosynthetic gene clusters characterized encode enzymes typical of polyketide biosynthesis instead of enzymes commonly associated with PNA biosynthesis, which, along with labeled precursor feeding studies, implies that the core saccharides found in the miharamycins and amipurimycin are partially assembled as polyketides rather than derived solely from carbohydrates. Furthermore, in vitro analysis of Mhr20 and Amc18 established their roles as ATP-grasp ligases involved in the attachment of the pendant amino acids found in these PNAs, and Mhr24 was found to be an unusual hydroxylase involved in the biosynthesis of N5-hydroxyarginine. Finally, analysis of the amc cluster and feeding studies also led to the proposal of a biosynthetic pathway for (-)-cispentacin.


Asunto(s)
Antibacterianos/biosíntesis , N-Glicosil Hidrolasas/biosíntesis , Nucleósidos/biosíntesis , Purinas/biosíntesis , Antibacterianos/química , Vías Biosintéticas , Conformación Molecular , Familia de Multigenes , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Nucleósidos/química , Nucleósidos/genética , Purinas/química , Streptomyces/genética
14.
Mol Microbiol ; 107(6): 688-703, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29292548

RESUMEN

The biosynthesis of iron-sulfur (Fe-S) clusters in Bacillus subtilis is mediated by the SUF-like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe-S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe-S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe-S cluster assembly.


Asunto(s)
Bacillus subtilis/genética , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Liasas/genética , Operón , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Liasas/metabolismo , Modelos Moleculares , Elementos Estructurales de las Proteínas , Subunidades de Proteína/metabolismo , Azufre/metabolismo
15.
Chembiochem ; 20(1): 29-33, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277292

RESUMEN

Terpenoids have diverse structures and thus represent an important class of biologically active natural products. The structural diversity of terpenoids originates from the coupling of prenyl diphosphate substrates, such as isopentenyl diphosphate and dimethylallyl diphosphate. These isoprenyl diphosphates undergo canonical and sequential "head-to-tail" coupling catalyzed by terpene synthases, followed by modifications such as cyclization, hydroxylation, and glycosylation. In recent years, several terpene synthases that catalyze irregular "non-head-to-tail" couplings to afford branched terpenoids have been identified. This minireview describes structural and mechanistic insights into these unusual coupling reactions that provide a new strategy for the structural diversification of natural products.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Biocatálisis , Terpenos/metabolismo , Bacterias/enzimología , Dominio Catalítico , Lavandula/enzimología , Terpenos/química
16.
Extremophiles ; 23(4): 377-388, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30919057

RESUMEN

Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.


Asunto(s)
2-Isopropilmalato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo , Procesamiento Proteico-Postraduccional , Thermus thermophilus/enzimología , 2-Isopropilmalato Sintasa/química , 2-Isopropilmalato Sintasa/genética , Acetilación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Leucina/biosíntesis , Thermus thermophilus/metabolismo
17.
Org Biomol Chem ; 17(3): 461-466, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30570639

RESUMEN

The natural product A-94964 is a uridine-derived nucleoside antibiotic isolated from Streptomyces sp. SANK 60404. In this study, we propose a biosynthetic pathway for A-94964 using gene deletion experiments coupled with in silico analysis of the biosynthetic gene cluster. This study provides insights into the unique biosynthetic pathway for A-94964.


Asunto(s)
Antibacterianos/biosíntesis , Productos Biológicos/metabolismo , Disacáridos/biosíntesis , Nucleótidos de Pirimidina/biosíntesis , Uridina/metabolismo , Antibacterianos/química , Productos Biológicos/química , Disacáridos/química , Disacáridos/genética , Estructura Molecular , Familia de Multigenes , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/genética , Uridina/química
18.
Angew Chem Int Ed Engl ; 58(38): 13349-13353, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31350791

RESUMEN

Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho-quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1-7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1-catalyzed decarboxylative condensation of an α-hydroxyl-ß-keto acid intermediate with 3-hydroxybutyryl-ACP followed by CqsB2-catalyzed oxidative cyclization. Based on crystal structures and mutagenesis-based biochemical assays, a detailed mechanism for the unique deprotonation-initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles.


Asunto(s)
Alcaloides/química , Carbazoles/síntesis química , Streptomyces/química , Ciclización , Humanos
19.
Angew Chem Int Ed Engl ; 58(42): 15046-15050, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31418991

RESUMEN

The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Trichoderma/metabolismo , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/genética , Estructura Molecular , Fosfatos de Poliisoprenilo/química , Sesquiterpenos/química , Estereoisomerismo , Trichoderma/enzimología , Trichoderma/genética
20.
Biochemistry ; 57(33): 4963-4966, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29966085

RESUMEN

Fom3, a cobalamin-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase, catalyzes C-methylation at the C2 position of cytidylylated 2-hydroxyethylphosphonate (HEP-CMP) to afford cytidylylated 2-hydroxypropylphosphonate (HPP-CMP) in fosfomycin biosynthesis. In this study, the Fom3 reaction product HPP-CMP was reanalyzed by chiral ligand exchange chromatography to confirm its stereochemistry. The Fom3 methylation product was found to be ( S)-HPP-CMP only, indicating that the stereochemistry of the C-methylation catalyzed by Fom3 is ( S)-selective. In addition, Fom3 reaction was performed with ( S)-[2-2H1]HEP-CMP and ( R)-[2-2H1]HEP-CMP to elucidate the stereoselectivity during the abstraction of the hydrogen atom from C2 of HEP-CMP. Liquid chromatography-electrospray ionization mass spectrometry analysis of the 5'-deoxyadenosine produced showed that the 2H atom of ( R)-[2-2H1]HEP-CMP was incorporated into 5'-deoxyadenosine but that from ( S)-[2-2H1]HEP-CMP was not. Retention of the 2H atom of ( S)-[2-2H1]HEP-CMP in HPP-CMP was also observed. These results indicate that the 5'-deoxyadenosyl radical stereoselectively abstracts the pro-R hydrogen atom at the C2 position of HEP-CMP and the substrate radical intermediate reacts with the methyl group on cobalamin that is located on the opposite side of the substrate from SAM. Consequently, it was clarified that the C-methylation catalyzed by Fom3 proceeds with inversion of configuration.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Fosfomicina/química , Metiltransferasas/química , S-Adenosilmetionina/química , Vitamina B 12/química , Antibacterianos/biosíntesis , Cromatografía Liquida , Citidina Monofosfato/química , Fosfomicina/biosíntesis , Metilación , Modelos Químicos , Organofosfonatos/química , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA