Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067551

RESUMEN

Waste wood, which has a large amount of cellulose fibers, should be transformed into useful materials for addressing environmental and resource problems. Thus, this study analyzed the application of waste wood as supercapacitor electrode material. First, cellulose fibers were extracted from waste wood and mixed with different contents of graphene nanoplatelets (GnPs) in water. Using a facile filtration method, cellulose papers with GnPs were prepared and converted into carbon papers through carbonization and then to porous activated carbon papers containing GnPs (ACP-GnP) through chemical activation processes. For the morphology of ACP-GnP, activated carbon fibers with abundant pores were formed. The increase in the amount of GnPs attached to the fiber surfaces decreased the number of pores. The Brunauer-Emmett-Teller surface areas and specific capacitance of the ACP-GnP electrodes decreased with an increase in the GnP content. However, the galvanostatic charge-discharge curves of ACPs with higher GnP contents gradually changed into triangular and linear shapes, which are associated with the capacitive performance. For example, ACP with 15 wt% GnP had a low mass transfer resistance and high charge delivery of ions, resulting in the specific capacitance value of 267 Fg-1 owing to micropore and mesopore formation during the activation of carbon paper.

2.
Molecules ; 27(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335204

RESUMEN

To transform tall goldenrods, which are invasive alien plant that destroy the ecosystem of South Korea, into useful materials, cellulose fibers isolated from tall goldenrods are applied as EMI shielding materials in this study. The obtained cellulose fibers were blended with CNTs, which were used as additives, to improve the electrical conductivity. TGCF/CNT papers prepared using a facile paper manufacturing process with various weight percent ratios and thickness were carbonized at high temperatures and investigated as EMI shielding materials. The increase in the carbonization temperature, thickness, and CNT content enhanced the electrical conductivity and EMI SE of TGCF/CNT carbon papers. TGCF/CNT-15 papers, with approximately 4.5 mm of thickness, carbonized at 1300 °C exhibited the highest electrical conductivity of 6.35 S cm-1, indicating an EMI SE of approximately 62 dB at 1.6 GHz of the low frequency band. Additionally, the obtained TGCF/CNT carbon papers were flexible and could be bent and wound without breaking.


Asunto(s)
Nanotubos de Carbono , Solidago , Celulosa , Ecosistema , Fenómenos Electromagnéticos
3.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080158

RESUMEN

Lyocell is a biodegradable filament yarn obtained by directly dissolving cellulose in a mixture of N-methylmorpholine-N-oxide and a non-toxic solvent. Therefore, herein, lyocell fabrics were employed as eco-friendly carbon-precursor substitutes for use as electromagnetic interference (EMI) shielding materials. First, a lyocell fabric treated with polyacrylamide via electron beam irradiation reported in a previous study to increase carbon yields and tensile strengths was carbonized by heating to 900, 1100, and 1300 °C. The carbonization transformed the fabric into a graphitic crystalline structure, and its electrical conductivity and EMI shielding effectiveness (SE) were enhanced despite the absence of metals. For a single sheet, the electrical conductivities of the lyocell-based carbon fabric samples at the different carbonization temperatures were 3.57, 5.96, and 8.91 S m-1, leading to an EMI SE of approximately 18, 35, and 82 dB at 1.5-3.0 GHz, respectively. For three sheets of fabric carbonized at 1300 °C, the electrical conductivity was 10.80 S m-1, resulting in an excellent EMI SE of approximately 105 dB. Generally, EM radiation is reduced by 99.9999% in instances when the EMI SE was over 60 dB. The EMI SE of the three lyocell-based carbon fabric sheets obtained at 1100 °C and that of all the sheets of the sample obtained at 1300 °C exceeded approximately 60 dB.


Asunto(s)
Grafito , Nanotubos de Carbono , Fenómenos Electromagnéticos , Nanotubos de Carbono/química , Temperatura , Textiles
4.
Molecules ; 26(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922535

RESUMEN

Carbon fibers, which act as reinforcements in many applications, are often obtained from polyacrylonitrile (PAN). However, their production is expensive and results in waste problems. Therefore, we focused on producing carbon fibers from lyocell, a cellulose-based material, and analyzed the effects of the process parameters on their mechanical properties and carbon yields. Lyocell was initially grafted with polyacrylamide (PAM) via electron-beam irradiation (EBI) and was subsequently stabilized and carbonized. Thermal analysis showed that PAM grafting increased the carbon yields to 20% at 1000 °C when compared to that of raw lyocell, which degraded completely at about 600 °C. Stabilization further increased this yield to 55%. The morphology of the produced carbon fibers was highly dependent on PAM concentration, with fibers obtained at concentrations ≤0.5 wt.% exhibiting clear, rigid, and round cross-sections with smooth surfaces, whereas fibers obtained from 2 and 4 wt.% showed peeling surfaces and attachment between individual fibers due to high viscosity of PAM. These features affected the mechanical properties of the fibers. In this study, carbon fibers of the highest tensile strength (1.39 GPa) were produced with 0.5 wt.% PAM, thereby establishing the feasibility of using EBI-induced PAM grafting on lyocell fabrics to produce high-performance carbon fibers with good yields.

5.
Molecules ; 25(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872500

RESUMEN

For the preparation of activated carbon papers (APCs) as supercapacitor electrodes, impurity substances were removed from rice husks, before carbonization and various activation temperature treatments, to optimize electro chemical efficiency. The porosities and electrochemical performances of the ACPs depended strongly on activation temperature: The specific surface area increased from 202.92 (500 °C) to 2158.48 m2 g-1 (1100 °C). XRD and Raman analyses revealed that ACP graphitization also increased with the activation temperature. For activation at 1100 °C, the maximum specific capacitance was 255 F g-1, and over 92% of its capacitance was retained after 2000 cycles.


Asunto(s)
Celulosa/química , Carbón Orgánico/química , Oryza/química , Papel , Capacidad Eléctrica , Electrodos , Porosidad , Temperatura
6.
Molecules ; 25(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707670

RESUMEN

This study researches the effect of phase change materials (PCMs) containing carbonized rice husks (CRHs) in wood plastic composites (WPCs) as roof finishing materials on roof-surface and indoor temperatures. A cool roof miniature model was prepared, and measurements were taken using three fixed temperatures of 30 to 32 °C, 35 to 37 °C, and 40 to 42 °C. Sodium sulfate decahydrate (Na2SO4·10H2O) and paraffin wax were selected as the PCMs. CRHs were used as additives to improve the thermal conductivities of the PCMs. At lower fixed temperatures such as 30 to 32 °C and 35 to 37 °C, the rates of increase of the surface temperatures of roofs containing CRHs with Na2SO4·10H2O, and paraffin wax, were observed to gradually decrease compared to those of the roofs without PCMs. The indoor temperatures for the above-mentioned PCMs containing CRHs were maintained to be lower than those of the indoors without PCMs. Additionally, as the CRH content in the PCM increased, the rates of increase of the roof-surface and indoor temperatures decreased due to a faster roof heat absorption by PCMs through the improved thermal conductivity of CRHs. However, under higher artificial temperatures such as 40 to 42 °C, Na2SO4·10H2O with CRHs exhibited no effect due to being out of latent heat range of Na2SO4·H2O. For paraffin wax, as CRH content increased, their roof- surface and indoor temperatures decreased. Especially, the surface temperature of the roof containing paraffin contained 5 wt.% CRHs reduced by 11 °C, and its indoor temperature dropped to 26.4 °C. The thermal conductivity of PCM was enhanced by the addition of CRHs. A suitable PCM selection in each location can result in the reduction of the roof-surface and indoor temperatures.


Asunto(s)
Carbono/química , Frío , Arquitectura y Construcción de Instituciones de Salud , Oryza/química , Transición de Fase , Humanos , Conductividad Térmica
7.
J Nanosci Nanotechnol ; 19(4): 2224-2227, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486972

RESUMEN

Optimum strain compensation structures for In0.07GaAs-based MQWs were investigated to obtain a higher output power for infrared lighting-emitting diodes (IR-LEDs) requiring a 940 nm wave-length. A GaAsP0.06 tensile strain material for compensating the compressive strain of In0.07GaAs quantum wells was used as a quantum barrier. To improve upon the excessive unbalance strain condition caused due to the In0.07GaAs quantum well and GaAsP0.06 quantum barrier, a conditioned Al0.2GaAs strain balancing barrier was also investigated. Through subsequent photoluminescence (PL) measurements, it was found that the GaAsP0.06 tensile strain barrier could effectively compensate for the compressive strain of In0.07GaAs quantum wells. Furthermore, the PL intensity of In0.07GaAs/GaAsP0.06 MQWs was observed to be markedly improved by using an Al0.2GaAs strain balancing barrier. A fabricated IR-LED chip, having In0.07GaAs/GaAsP0.06 MQWs with an Al0.2GaAs strain balancing barrier, showed a 60% higher light output power than conventional MQWs. These results subsequently suggest that using GaAsP0.06 and Al0.2GaAs barriers effectively improved unbalanced strain conditions of lattice-mismatched In0.07GaAs based MQWs requiring a 940 nm emitting wavelength.

8.
J Nanosci Nanotechnol ; 18(5): 3329-3334, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442835

RESUMEN

In this study, the monodisperse amorphous silica nanoparticles (SiO2 NPs) with uniform size distribution and high surface area were successfully synthesized from fly ash as a silica source by chemical sol-gel method. The influence of reaction conditions such as surfactant concentration, aging temperature (Ta), and aging time (Ta) on formation of SiO2 NPs was investigated. Through SEM characterization, it was founded that the uniform and small spherical SiO2 NPs with diameter of 20-30 nm could be synthesized at the appropriate CTAB content of 3 wt%, Ta of 60 °C, and Ta of 8 h. In addition, XRD and nitrogen adsorption-desorption measurements indicated that the SiO2 NPs were obtained under amorphous structure, which possesses a high specific surface area of 408 m2 g-1. The obtained results imply that the successful synthesis of SiO2 NPs from fly ash not only displays an effectively alternative approach to provide high quality SiO2 NPs for various necessary applications but also help solving environmental issues due to large amount of fly ash waste each year.

10.
RSC Adv ; 14(13): 9062-9071, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38500626

RESUMEN

Copoly(amic acid) was prepared using the diamine monomer N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(4-aminobenzamide) (TFAB) and the anhydride monomers 4,4'-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA) and 4,4'-biphthalic anhydride (BPA). Thereafter, a colorless and transparent copoly(amide imide) (Co-CPAI) film was synthesized through various heat treatments. Co-CPAI hybrid films with a TFAB : 6FDA : BPA molar ratio of 1 : 0.5 : 0.5 were subsequently fabricated using organically modified hectorite (STN) with various contents ranging from 0 to 7 wt% via the solution intercalation method. Finally, the thermomechanical properties, clay dispersion, and optical transmittance of the hybrid films were investigated. The results of wide-angle X-ray diffractometry and transmission electron microscopy demonstrated good dispersion at low clay loadings; however, clay agglomeration was observed above a certain critical STN content. At the critical STN content of 3 wt%, the clay was evenly distributed in the matrix with a nanoscale thickness of approximately 10 nm. Hybrid films containing 3 wt% STN showed excellent thermomechanical properties. Beyond this critical clay content, the physical properties of the films decreased because of the agglomeration of excess clay. Regardless of the clay content, however, the optical properties of the hybrid films remained constant, and their yellow indices, which ranged from 2 to 4, indicated excellent colorless transparency.

11.
Nanomaterials (Basel) ; 14(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392722

RESUMEN

This study developed an advanced 850 nm centered distributed Bragg reflector (DBR) (broadband DBR) composed of nanomaterial-based multiple structures to improve the optical efficiency of an 850 nm near-infrared light-emitting diode (NIR-LED). A combined 850 nm centered broadband DBR was fabricated by growing an 800 nm centered ten-pair DBR on a 900 nm centered ten-pair DBR (denoted as a combined DBR). The combined DBR exhibited a slightly wider peak band than conventional DBRs. Furthermore, the peak band width of the combined DBR significantly increased upon using a reflective AlAs buffer layer that reduced the overlapped reflection. The output power (20.5 mW) of NIR-LED chips using the combined DBR with an AlAs buffer layer exceeded that of a conventional 850 nm centered DBR (14.5 mW) by more than 40%. Results indicated that combining the optical conditions of wavelengths and the AlAs buffer layer effectively strengthened the broadband effect of the DBR and increased the optical efficiency of the 850 nm NIR-LED.

12.
Sci Rep ; 14(1): 10670, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724587

RESUMEN

In this study, we introduce a method for replacing the glass used in existing display electronic materials, lighting, and solar cells by synthesizing a colorless and transparent polyimide (CPI) film with excellent mechanical properties and thermal stability using a combination of new monomers. Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-biphthalic anhydride (BPA) and diamine 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AHP). Various contents of organically modified montmorillonite (MMT) and mica were dispersed in PAA solution through solution intercalation, and then CPI hybrid films were prepared through multi-step thermal imidization. The organoclays synthesized to prepare CPI hybrid films were Cloisite 93A (CS-MMT) and hexadimethrine-mica (HM-Mica) based on MMT and mica, respectively. In particular, the diamine monomer AHP containing a -OH group was selected to increase the dispersibility and compatibility between the hydrophilic clays and the CPI matrix. To demonstrate the characteristics of CPI, the overall polymer structure was bent and a strong electron withdrawing -CF3 group was used as a substituent. The thermomechanical properties, morphology of clay dispersion, and optical transparency of the CPI hybrid films were investigated and compared according to the type and content of organoclays. Two types of organoclays, CS-MMT and HM-Mica, were dispersed in a CPI matrix at 1 to 7 wt%, respectively. In electron microscopy, most of the clays were uniformly dispersed in a plate-like shape of less than 20 nm at a certain critical content of the two types of organoclays, but agglomeration of the clays was observed when the content was higher than the critical content. Hybrids using HM-Mica had better thermomechanical properties and hybrids containing CS-MMT had better optical transparency.

13.
Sci Rep ; 14(1): 655, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182758

RESUMEN

Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-oxydiphthalic anhydride and diamine 3,3'-dihydroxybenzidine, and polyimide (PI) hybrid films were synthesized by dispersing organo-mica in PAA through a solution intercalation method. Hexadimethrine-mica (HM-Mica), 1,2-dimethylhexadecylimidazolium-mica (MI-Mica), and didodecyldiphenylammonium-mica (DP-Mica), which were obtained via the organic modification of pristine mica, were used as the organo-micas for the PI hybrid films. The organo-mica content was varied from 0.5 to 3.0 wt% with respect to the PI matrix. The thermomechanical properties, morphology, and optical transparency of the resultant PI hybrid films were measured and compared. Dispersion of even small amounts of organo-mica effectively improved the physical properties of the PI hybrids, and maximum enhancements in physical properties were observed at a specific critical content. Electron microscopy of the hybrid films revealed that the organo-mica uniformly dispersed throughout the polymer matrix at the nanoscale level when added at low contents but aggregated in the matrix when added at levels above the critical content. Structural changes in the organo-mica closely influenced the changes in the physical properties of the hybrid films. All PI hybrid films with various organo-mica contents showed similar optical properties, but that prepared with MI-Mica demonstrated the best thermomechanical properties. All synthesized PI hybrid films were transparent regardless of the type and content of organo-mica used.

14.
ACS Omega ; 9(10): 12195-12203, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497003

RESUMEN

Six poly(amic acid)s (PAAs) were synthesized by reacting bis(3-aminophenyl) sulfone with various dianhydride monomers such as pyromellitic dianhydride, 4,4'-biphthalic anhydride, dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride, 4,4'-oxidiphthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride. These PAAs were then converted to polyimide (PI) films by thermal imidization at various temperatures. To obtain colorless and transparent PI (CPI), the dianhydride monomer used in this study had an overall bent structure, a structure containing a strong electron-withdrawing -CF3 substituent or an alicyclic ring. In addition, some monomers contained ether or ketone functional groups in their bent structures. The thermomechanical properties, optical transparency, and solubility of CPI films with six different dianhydride monomer structures were investigated, and the correlation between the monomer structure and CPI film properties was clarified. Overall, CPI with an aromatic main chain structure or a linear structure had excellent thermal and mechanical properties. In contrast, CPI with a bent structure containing functional groups or substituents in the main chain exhibited excellent optical transparency and solubility.

15.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630122

RESUMEN

This study investigated a reflective transparent structure to improve the optical efficiency of 850 nm infrared light-emitting diodes (IR-LEDs), by effectively enhancing the number of extracted photons emitted from the active region. The reflective transparent structure was fabricated by combining transparent epitaxial and reflective bonding structures. The transparent epitaxial structure was grown by the liquid-phase epitaxy method, which efficiently extracted photons emitted from the active area in IR-LEDs, both in the vertical and horizontal directions. Furthermore, a reflective bonding structure was fabricated using an omnidirectional reflector and a eutectic metal, which efficiently reflected the photons emitted downwards from the active area in an upward direction. To evaluate reflective transparent IR-LED efficiency, a conventional absorbing substrate infrared light-emitting diode (AS IR-LED) and a transparent substrate infrared light-emitting diode (TS IR-LED) were fabricated, and their characteristics were analyzed. Based on the power-current (L-I) evaluation results, the output power (212 mW) of the 850 nm IR-LED with the reflective transparent structure increased by 76% and 26%, relative to those of the AS IR-LED (121 mW) and TS IR-LED (169 mW), respectively. Furthermore, the reflective transparent structure possesses both transparent and reflective properties, as confirmed by photometric and radial theta measurements. Therefore, light photons emitted from the active area of the 850 nm IR-LED were efficiently extracted upward and sideways, because of the reflective transparent structure.

16.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850146

RESUMEN

As environmental pollution becomes a serious concern, considerable effort has been undertaken to develop power devices with minimal production of carbon dioxide (CO2) and exhaust gases. Owing to this effort, interest in technologies related to hybrid and electric products that use fuel cells has been increasing. The risk of human injuries owing to electromagnetic waves generated by electrical and electronic devices has been also rising, prompting the development of mitigating technologies. In addition, antistatic devices for protecting operators from static electricity have also been considered. Therefore, in this study, we investigated the development of thermoplastic carbon composites containing carbon fibers (CFs) and carbon nanotubes (CNTs). Ultimately, materials with improved mechanical properties (e.g., flexural, impact, and tensile strength properties of about +61.09%, +21.44%, +63.56%, respectively), electromagnetic interference (EMI) shielding (+70.73 dB), and surface resistivity (nearly zero) can be developed by impregnating CFs and CNTs with polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) resins, respectively. The total average mechanical properties of PC and ABS composites increased by 24.35% compared with that of ABS composites, while that of PC composites increased by 32.86% with that of PC and ABS composites. Therefore, in this study, we aimed to develop carbon composites, to take advantage of these thermoplastic resins.

17.
ACS Omega ; 8(18): 16174-16185, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179633

RESUMEN

The production of effective visible-light (VL) photocatalysts for the elimination of noxious organic pollutants from wastewater has attracted considerable interest owing to increasing awareness worldwide. Despite the large number of photocatalysts reported, the selectivity and activity of photocatalysts still need to be developed. The goal of this research is to eliminate toxic methylene blue (MB) dye from wastewater through a cost-effective photocatalytic process using VL illumination. A novel N-doped ZnO/carbon nanotube (NZO/CNT) nanocomposite was successfully synthesized via a facile cocrystallization method. The structural, morphological, and optical properties of the synthesized nanocomposite were systematically investigated. The as-prepared NZO/CNT composite exhibited remarkable photocatalytic performance (96.58%) within 25 min of VL irradiation. The activity was 92, 52, and 27% greater than that of photolysis, ZnO, and NZO, respectively, under identical conditions. The enhanced photocatalytic efficiency of NZO/CNT was attributed to the N atom and CNT involvement: N contributes to narrowing the band gap of ZnO, and CNT captures the electrons and maintains the electron flow in the system. The reaction kinetics of MB degradation, catalyst reusability, and stability were also investigated. In addition, the photodegradation products and their toxicity effects in our environment were analyzed using the liquid chromatography-mass spectrometry and ecological structure activity relationships programs, respectively. The findings of the current study demonstrate that the NZO/CNT nanocomposite can be utilized to remove contaminants in an environmentally acceptable manner, thereby providing a new window for practical applications.

18.
Front Neurol ; 14: 1163904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251228

RESUMEN

Introduction: Sleep is an indispensable component of human life. However, in modern times, the number of people suffering from sleep disorders, such as insomnia and sleep deprivation, has increased significantly. Therefore, to alleviate the discomfort to the patient due to lack of sleep, sleeping pills and various sleep aids are being introduced and used. However, sleeping drugs are prescribed only to a limited extent due to the side effects posed by them and resistance to such drugs developed by patients in the long term, and the majority of sleep aids are scientifically groundless products. This study aimed to develop a device that induced sleep by spraying a mixed gas of carbon dioxide and air to create an environment that could induce sleep, similar to the inside of a sealed vehicle, to control oxygen saturation in the body. Methods: Based on the stipulated safety standards and the human tidal volume, the target concentration of carbon dioxide was determined to be of three types: 15,000, 20,000, and 25,000 ppm. After analyzing diverse structures for safely mixing gases, the most appropriate shape, the reserve tank, was selected as the best suited structure. Various variables, such as spraying angle and distance, flow rate, atmospheric temperature, and nozzle length, were comprehensively measured and tested. Furthermore based on this aspect, diffusion simulation of carbon dioxide concentration and actual experiments were conducted. To secure the stability and reliability of the developed product, an accredited test was performed to investigate the error rate of carbon dioxide concentration. Furthermore, clinical trials comprising polysomnography and questionnaires confirmed the effectiveness of the developed product not only in reducing sleep latency but also in enhancing the overall sleep quality. Results: When the developed device was put to use in reality, sleep latency was decreased by 29.01%, on average, for those with a sleep latency of 5 min or more, compared to when the device was not in use. Moreover, the total sleep time was increased by 29.19 min, WASO was decreased by 13.17%, and sleep efficiency was increased by 5.48%. We also affirmed that the ODI and 90% ODI did not decrease when the device was used. Although different questions may be raised about the safety of using a gas such as carbon dioxide (CO2), the result that tODI was not reduced shows that sleep aids using CO2 mixtures do not adversely affect human health. Discussion: The results of this study suggest a new method that can be used to treat sleep disorders including insomnia.

19.
RSC Adv ; 13(24): 16285-16292, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37266490

RESUMEN

Although aromatic polyimide (PI) exhibits excellent mechanical performance and thermal stability, its dark color limits applicability in optical displays. Therefore, it is desirable to manufacture colorless, transparent PI (CPI) nanocomposite films that retain excellent physical properties. In this study, a solution intercalation method was used to disperse organoclay (Cloisite 25A; CS25A) in poly(amic acid), which was prepared using 4,4'-oxydiphthalic dianhydride and 3,4'-oxydianiline as monomers. This dispersion was then subjected to thermal imidization to synthesize CPI hybrid films. The influence of the CS25A content (0-1.00 wt%) on the thermomechanical properties, optical transmittance, and morphology of the prepared films was investigated. The hybrid film with a CS25A content of 0.50 wt% exhibited the best thermomechanical properties. However, upon further increasing the organoclay content to 1.00 wt%, the physical properties deteriorated. At 0.50 wt% CS25A, some agglomeration occurred but most of the clay was well dispersed as nano-sized particles, as revealed by transmission electron microscopy. In contrast, when the CS25A content exceeded a critical content, most of the clay was agglomerated and the physical properties were reduced. All the obtained CPI hybrid films were colorless and transparent, regardless of the organoclay content.

20.
Micromachines (Basel) ; 14(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241676

RESUMEN

The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs of the reflective IR-LEDs. In the wafer bond process required for fabricating the reflective IR-LED, the Al/Au alloy, which has filled the hole patterns in Si3N4 film, was used for improving the reflectivity of the Ag reflector and was bonded directly to the top layer of p-AlGaAs on the epitaxial wafer. Based on current-voltage measurements, it was found that the Al/Au alloyed material has a distinct ohmic characteristic pertaining to the p-AlGaAs layer compared with those of the Au/Be alloy material. Therefore, the Al/Au alloy may constitute one of the favored approaches for overcoming the insulative reflective structures of reflective IR-LEDs. For a current density of 200 mA, a lower forward voltage (1.56 V) was observed from the wafer bond IR-LED chip made with the Al/Au alloy; this voltage was remarkably lower in value than that of the conventional chip made with the Au/Be metal (2.29 V). A higher output power (182 mW) was observed from the reflective IR-LEDs made with the Al/Au alloy, thus displaying an increase of 64% compared with those made with the Au/Be alloy (111 mW).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA