Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; : e2404907, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051519

RESUMEN

Colorless, transparent, and mechanically robust aramid polymers are synthesized from two diamine monomers with strong electron-withdrawing groups, using low-temperature solution condensation with diacid chloride. The aramids dissolved very well in the liquid acrylamide monomers. When N,N-dimethylacrylamide (DMA) is used as a reactive diluent, films with the desired features are produced from the hybrid aramid-DMA resins via ultraviolet (UV) curing. The hybrid films are colorless and transparent in the visible region and showed an increase in the glass transition temperature, tensile strength, and elastic modulus in proportion to the aramid content. Laminated glass is manufactured using the hybrid resin as an interlayer, which exhibits very strong adhesion between the two sheets of glass, is not easily broken by an external impact, and do not scatter fragments. Moreover, the laminated glass do not distort images and functioned very effectively in UV blocking, soundproofing, and suppressing changes in the ambient temperature. Heat treatment further improves the light transmittance and impact resistance of the laminated glass. Laminated glass specimens with various fluorescence colors are also manufactured. Aramid-reinforced films prepared using N,N-diethylacrylamide as a reactive diluent underwent thermally induced phase separation in a wet state, providing smart glass with a privacy protection function.

2.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475258

RESUMEN

In this study, various diamine monomers were used to synthesize aramid polymer films via a low-temperature solution condensation reaction with diacid chloride. For diamines with relatively high basicity, the reaction system became opaque because amine salt formation inhibited polymer synthesis. Meanwhile, low-basicity diamines with strong electron-withdrawing groups, such as CF3 and sulfone, were smoothly polymerized without amine salt formation to provide highly viscous solutions. The acid byproduct HCl generated during polymerization was removed by adding propylene oxide to the reaction vessel and converting the acid into highly volatile inert substances. The resulting solutions were used as varnishes without any additional purification, and polymer films with an excellent appearance were easily obtained through a conventional casting and convection drying process. The films neither tore nor broke when pulled or bent by hand; furthermore, even when heated up to 400 °C, they did not decompose or melt. Moreover, polymers prepared from 2,2-bis(trifluoromethyl)benzidine (TFMB) and bis(4-aminophenyl)sulfone (pAPS) did not exhibit glass transition until decomposition. The prepared polymer films showed a high elastic modulus of more than 4.1 GPa and a high tensile strength of more than 52 MPa. In particular, TFMB-, pAPS-, and 2,2-bis(4-aminophenyl)hexafluoropropane-based polymer films were colorless and transparent, with very high light transmittances of 95%, 96%, and 91%, respectively, at 420 nm and low yellow indexes of 2.4, 1.9, and 4.3, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA