Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 604(7907): 757-762, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418682

RESUMEN

Adhesion G-protein-coupled receptors (aGPCRs) are characterized by the presence of auto-proteolysing extracellular regions that are involved in cell-cell and cell-extracellular matrix interactions1. Self cleavage within the aGPCR auto-proteolysis-inducing (GAIN) domain produces two protomers-N-terminal and C-terminal fragments-that remain non-covalently attached after receptors reach the cell surface1. Upon dissociation of the N-terminal fragment, the C-terminus of the GAIN domain acts as a tethered agonist (TA) peptide to activate the seven-transmembrane domain with a mechanism that has been poorly understood2-5. Here we provide cryo-electron microscopy snapshots of two distinct members of the aGPCR family, GPR56 (also known as ADGRG1) and latrophilin 3 (LPHN3 (also known as ADGRL3)). Low-resolution maps of the receptors in their N-terminal fragment-bound state indicate that the GAIN domain projects flexibly towards the extracellular space, keeping the encrypted TA peptide away from the seven-transmembrane domain. High-resolution structures of GPR56 and LPHN3 in their active, G-protein-coupled states, reveal that after dissociation of the extracellular region, the decrypted TA peptides engage the seven-transmembrane domain core with a notable conservation of interactions that also involve extracellular loop 2. TA binding stabilizes breaks in the middle of transmembrane helices 6 and 7 that facilitate aGPCR coupling and activation of heterotrimeric G proteins. Collectively, these results enable us to propose a general model for aGPCR activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Adhesión Celular , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Humanos , Péptidos/química , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos
2.
J Biol Chem ; 299(10): 105223, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37673336

RESUMEN

Family B2 or adhesion G protein-coupled receptors (AGPCRs) are distinguished by variable extracellular regions that contain a modular protease, termed the GPCR autoproteolysis-inducing domain that self-cleaves the receptor into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), or seven transmembrane domain (7TM). The NTF and CTF remain bound after cleavage through noncovalent interactions. NTF binding to a ligand(s) presented by nearby cells, or the extracellular matrix anchors the NTF, such that cell movement generates force to induce NTF/CTF dissociation and expose the AGPCR tethered peptide agonist. The released tethered agonist (TA) binds rapidly to the 7TM orthosteric site to activate signaling. The orphan AGPCR, GPR114 was reported to be uncleaved, yet paradoxically capable of activation by its TA. GPR114 has an identical cleavage site and TA to efficiently cleave GPR56. Here, we used immunoblotting and biochemical assays to demonstrate that GPR114 is a cleaved receptor, and the self-cleavage is required for GPR114 TA-activation of Gs and no other classes of G proteins. Mutagenesis studies defined features of the GPR114 and GPR56 GAINA subdomains that influenced self-cleavage efficiency. Thrombin treatment of protease-activated receptor 1 leader/AGPCR fusion proteins demonstrated that acute decryption of the GPR114/56 TAs activated signaling. GPR114 was found to be expressed in an eosinophilic-like cancer cell line (EoL-1 cells) and endogenous GPR114 was efficiently self-cleaved. Application of GPR114 TA peptidomimetics to EoL-1 cells stimulated cAMP production. Our findings may aid future delineation of GPR114 function in eosinophil cAMP signaling related to migration, chemotaxis, or degranulation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Adhesión Celular , Péptidos/farmacología , Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Acoplados a Proteínas G/química , Humanos
3.
Angew Chem Int Ed Engl ; 53(27): 7010-3, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24797781

RESUMEN

Substrate-competitive kinase inhibitors represent a promising class of kinase inhibitors, however, there is no methodology to selectively identify this type of inhibitor. Substrate activity screening was applied to tyrosine kinases. By using this methodology, the first small-molecule substrates for any protein kinase were discovered, as well as the first substrate-competitive inhibitors of c-Src with activity in both biochemical and cellular assays. Characterization of the lead inhibitor demonstrates that substrate-competitive kinase inhibitors possess unique properties, including cellular efficacy that matches biochemical potency and synergy with ATP-competitive inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/metabolismo , Familia-src Quinasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/toxicidad , Especificidad por Sustrato , Familia-src Quinasas/química
4.
Structure ; 31(5): 553-564.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931277

RESUMEN

Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Pliegue de Proteína , Animales , Microscopía por Crioelectrón , Factores de Intercambio de Guanina Nucleótido/química , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Eur J Med Chem ; 249: 115043, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736152

RESUMEN

Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Proteínas Quinasas , Farmacóforo , Malaria Falciparum/tratamiento farmacológico , Plasmodium berghei
6.
ACS Med Chem Lett ; 14(12): 1774-1784, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116430

RESUMEN

Plasmodium kinases are increasingly recognized as potential novel antiplasmodial targets for the treatment of malaria, but only a small subset of these kinases have had structure-activity relationship (SAR) campaigns reported. Herein we report the discovery of CZC-54252 (1) as an inhibitor of five P. falciparum kinases PfARK1, PfARK3, PfNEK3, PfPK9, and PfPKB. 39 analogues were evaluated against all five kinases to establish SAR at three regions of the kinase active site. Nanomolar inhibitors of each kinase were discovered. We identified common and divergent SAR trends across all five kinases, highlighting substituents in each region that improve potency and selectivity for each kinase. Potent analogues were evaluated against the P. falciparum blood stage. Eight submicromolar inhibitors were discovered, of which 37 demonstrated potent antiplasmodial activity (EC50 = 0.16 µM). Our results provide an understanding of features needed to inhibit each individual kinase and lay groundwork for future optimization efforts toward novel antimalarials.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38009092

RESUMEN

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

8.
ChemMedChem ; 17(12): e202200161, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35403825

RESUMEN

Deep annotation of a library of 4-anilinoquin(az)olines led to the identification of 7-iodo-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC50 =14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquin(az)olines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.


Asunto(s)
Neoplasias de la Próstata , Inhibidores de Proteínas Quinasas , Humanos , Masculino , Proteína Quinasa C , Inhibidores de Proteínas Quinasas/farmacología
9.
J Med Chem ; 65(19): 13172-13197, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36166733

RESUMEN

Essential plasmodial kinases PfGSK3 and PfPK6 are considered novel drug targets to combat rising resistance to traditional antimalarial therapy. Herein, we report the discovery of IKK16 as a dual PfGSK3/PfPK6 inhibitor active against blood stage Pf3D7 parasites. To establish structure-activity relationships for PfPK6 and PfGSK3, 52 analogues were synthesized and assessed for the inhibition of PfGSK3 and PfPK6, with potent inhibitors further assessed for activity against blood and liver stage parasites. This culminated in the discovery of dual PfGSK3/PfPK6 inhibitors 23d (PfGSK3/PfPK6 IC50 = 172/11 nM) and 23e (PfGSK3/PfPK6 IC50 = 97/8 nM) with antiplasmodial activity (23d Pf3D7 EC50 = 552 ± 37 nM and 23e Pf3D7 EC50 = 1400 ± 13 nM). However, both compounds exhibited significant promiscuity when tested in a panel of human kinase targets. Our results demonstrate that dual PfPK6/PfGSK3 inhibitors with antiplasmodial activity can be identified and can set the stage for further optimization efforts.


Asunto(s)
Antimaláricos , Parásitos , Plasmodium , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Glucógeno Sintasa Quinasa 3 , Humanos , Plasmodium falciparum , Pirimidinas , Relación Estructura-Actividad
10.
J Med Chem ; 63(23): 14626-14646, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33215924

RESUMEN

STK17B is a member of the death-associated protein kinase family and has been genetically linked to the development of diverse diseases. However, the role of STK17B in normal and disease pathology is poorly defined. Here, we present the discovery of thieno[3,2-d] pyrimidine SGC-STK17B-1 (11s), a high-quality chemical probe for this understudied "dark" kinase. 11s is an ATP-competitive inhibitor that showed remarkable selectivity over other kinases including the closely related STK17A. X-ray crystallography of 11s and related thieno[3,2-d]pyrimidines bound to STK17B revealed a unique P-loop conformation characterized by a salt bridge between R41 and the carboxylic acid of the inhibitor. Molecular dynamic simulations of STK17B revealed the flexibility of the P-loop and a wide range of R41 conformations available to the apo-protein. The isomeric thieno[2,3-d]pyrimidine SGC-STK17B-1N (19g) was identified as a negative control compound. The >100-fold lower activity of 19g on STK17B was attributed to the reduced basicity of its pyrimidine N1.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Tiofenos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Dominio Catalítico , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/metabolismo
11.
ACS Chem Biol ; 14(7): 1556-1563, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31287657

RESUMEN

Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.


Asunto(s)
Proteína Tirosina Quinasa CSK/química , Proteína Tirosina Quinasa CSK/genética , Proteína Tirosina Quinasa CSK/metabolismo , Humanos , Modelos Moleculares , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/metabolismo , Mutación Puntual , Conformación Proteica , Proteolisis
12.
ACS Chem Biol ; 11(5): 1296-304, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26895387

RESUMEN

In the kinase field, there are many widely held tenets about conformation-selective inhibitors that have yet to be validated using controlled experiments. We have designed, synthesized, and characterized a series of kinase inhibitor analogues of dasatinib, an FDA-approved kinase inhibitor that binds the active conformation. This inhibitor series includes two Type II inhibitors that bind the DFG-out inactive conformation and two inhibitors that bind the αC-helix-out inactive conformation. Using this series of compounds, we analyze the impact that conformation-selective inhibitors have on target binding and kinome-wide selectivity.


Asunto(s)
Dasatinib/análogos & derivados , Dasatinib/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Animales , Pollos , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteínas Quinasas/química
13.
Clin Cancer Res ; 22(20): 5087-5096, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27154914

RESUMEN

PURPOSE: c-Src has been shown to play a pivotal role in breast cancer progression, metastasis, and angiogenesis. In the clinic, however, the limited efficacy and high toxicity of existing c-Src inhibitors have tempered the enthusiasm for targeting c-Src. We developed a novel c-Src inhibitor (UM-164) that specifically binds the DFG-out inactive conformation of its target kinases. We hypothesized that binding the inactive kinase conformation would lead to improved pharmacologic outcomes by altering the noncatalytic functions of the targeted kinases. EXPERIMENTAL DESIGN: We have analyzed the anti-triple-negative breast cancer (TNBC) activity of UM-164 in a comprehensive manner that includes in vitro cell proliferation, migration, and invasion assays (including a novel patient-derived xenograft cell line, VARI-068), along with in vivo TNBC xenografts. RESULTS: We demonstrate that UM-164 binds the inactive kinase conformation of c-Src. Kinome-wide profiling of UM-164 identified that Src and p38 kinase families were potently inhibited by UM-164. We further demonstrate that dual c-Src/p38 inhibition is superior to mono-inhibition of c-Src or p38 alone. We demonstrate that UM-164 alters the cell localization of c-Src in TNBC cells. In xenograft models of TNBC, UM-164 resulted in a significant decrease of tumor growth compared with controls, with limited in vivo toxicity. CONCLUSIONS: In contrast with c-Src kinase inhibitors used in the clinic (1, 2), we demonstrate in vivo efficacy in xenograft models of TNBC. Our results suggest that the dual activity drug UM-164 is a promising lead compound for developing the first targeted therapeutic strategy against TNBC. Clin Cancer Res; 22(20); 5087-96. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Familia-src Quinasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión/fisiología , Proteína Tirosina Quinasa CSK , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dasatinib/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Unión Proteica/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
ACS Med Chem Lett ; 6(8): 898-901, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26286460

RESUMEN

We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest.

16.
ACS Chem Biol ; 7(11): 1910-7, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22928736

RESUMEN

We have developed the first irreversible inhibitors of wild-type c-Src kinase. We demonstrate that our irreversible inhibitors display improved potency and selectivity relative to that of their reversible counterparts. Our strategy involves modifying a promiscuous kinase inhibitor with an electrophile to generate covalent inhibitors of c-Src. We applied this methodology to two inhibitor scaffolds that exhibit increased cellular efficacy when rendered irreversible. In addition, we have demonstrated the utility of irreversible inhibitors in studying the conformation of an important loop in kinases that can control inhibitor selectivity and cause drug resistance. Together, we have developed a general and robust framework for generating selective irreversible inhibitors from reversible, promiscuous inhibitor scaffolds.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Pollos , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Familia-src Quinasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA