Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 18(8): 1666-1677, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133377

RESUMEN

Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4-6 D0) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS-b-PLA bottlebrush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30-100 lamellar periods, with the sharpness of the orientation gradient decreasing substantially with increasing film thickness. This observation suggests a competition between growth of aligned, heterogeneously nucleated, grains at the surface and orientationally isotropic, homogeneously nucleated, grains throughout the bulk. This work demonstrates the high potential of bottlebrush block copolymers in rapid fabrication workflows and provides a point of comparison for future application of directed self-assembly to BBCP ordering.

2.
J Chem Phys ; 156(4): 041102, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35105059

RESUMEN

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques. Here, we report on the size distributions of both pure and doped droplets collected from single-shot x-ray imaging and produced from the free-jet expansion of helium through a 5 µm diameter nozzle at 20 bars and nozzle temperatures ranging from 4.2 to 9 K. This work extends the measurement of large helium nanodroplets containing 109-1011 atoms, which are shown to follow an exponential size distribution. Additionally, we demonstrate that the size distributions of the doped droplets follow those of the pure droplets at the same stagnation condition but with smaller average sizes.

3.
Support Care Cancer ; 29(3): 1327-1335, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32627056

RESUMEN

PURPOSE: Cancer-induced bone pain (CIBP) can be challenging to manage in advanced cancer. The unique properties of methadone may have a role in refractory CIBP. We aimed to evaluate the analgesic effects of methadone for CIBP when other opioids are ineffective or intolerable. METHODS: A retrospective study of palliative care inpatients rotated to methadone from another opioid for CIBP over a 4-year period. Primary outcome was ≥ 30% reduction in pain intensity (11-point numeric rating scale) from baseline to completion of methadone rotation (MR). Secondary outcomes were ≥ 50% reduction in pain intensity and changes in long-acting and breakthrough opioid requirements. RESULTS: Ninety-four eligible patients completed MR for the following reasons: poor pain control (72.3%), opioid toxicities (4.3%) or both (23.4%). On completion of MR, 70.2% and 53.2% achieved a ≥ 30% and ≥ 50% reduction in pain respectively, with mean pain intensity score reduced from 5.6 (SD = 2.1) at baseline to 2.6 (SD = 2.5) (p < 0.001). Mean calculated daily methadone dose pre-MR was 25.7 mg (SD = 10.9), with 72.3% of patients requiring a lower dose on completion of MR (mean 17.0 mg, SD = 8.5). The mean number of breakthrough opioid analgesia used a day reduced from 3.4 (SD = 2.3) to 1.8 (SD = 1.7) (p < 0.001). CONCLUSIONS: MR for CIBP may result in reduction in pain intensity, when other opioids are ineffective or intolerable, with patients requiring reduced overall dosing of their long-acting opioid and frequency of breakthrough opioid use.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Huesos/patología , Dolor en Cáncer/tratamiento farmacológico , Metadona/uso terapéutico , Neoplasias/complicaciones , Manejo del Dolor/métodos , Anciano , Analgésicos Opioides/farmacología , Femenino , Humanos , Masculino , Metadona/farmacología , Estudios Retrospectivos
4.
Acc Chem Res ; 49(12): 2756-2764, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993010

RESUMEN

The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.

5.
J Phys Chem A ; 119(28): 7742-52, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25860092

RESUMEN

We report a combined experimental and theoretical study of the OH + cis-2-butene and OH + trans-2-butene reactions at combustion-relevant conditions: pressures of 1-20 bar and temperatures of 400-800 K. We probe the OH radical time histories by laser-induced fluorescence and analyze these experimental measurements with aid from time-dependent master-equation calculations. Importantly, our investigation covers a temperature range where experimental data on OH + alkene chemistry in general are lacking, and interpretation of such data is challenging due to the complexity of the competing reaction pathways. Guided by theory, we unravel this complex behavior and determine the temperature- and pressure-dependent rate coefficients for the three most important OH + 2-butene reaction channels at our conditions: H abstraction, OH addition to the double bond, and back-dissociation of the OH-butene adduct.

6.
ACS Cent Sci ; 9(11): 2096-2107, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38033802

RESUMEN

Understanding the solution-state aggregate structure and the consequent hierarchical assembly of conjugated polymers is crucial for controlling multiscale morphologies during solid thin-film deposition and the resultant electronic properties. However, it remains challenging to comprehend detailed solution aggregate structures of conjugated polymers, let alone their chiral assembly due to the complex aggregation behavior. Herein, we present solution-state aggregate structures and their impact on hierarchical chiral helical assembly using an achiral diketopyrrolopyrrole-quaterthiophene (DPP-T4) copolymer and its two close structural analogues wherein the bithiophene is functionalized with methyl groups (DPP-T2M2) or fluorine atoms (DPP-T2F2). Combining in-depth small-angle X-ray scattering analysis with various microscopic solution imaging techniques, we find distinct aggregate in each DPP solution: (i) semicrystalline 1D fiber aggregates of DPP-T2F2 with a strongly bound internal structure, (ii) semicrystalline 1D fiber aggregates of DPP-T2M2 with a weakly bound internal structure, and (iii) highly crystalline 2D sheet aggregates of DPP-T4. These nanoscopic aggregates develop into lyotropic chiral helical liquid crystal (LC) mesophases at high solution concentrations. Intriguingly, the dimensionality of solution aggregates largely modulates hierarchical chiral helical pitches across nanoscopic to micrometer scales, with the more rigid 2D sheet aggregate of DPP-T4 creating much larger pitch length than the more flexible 1D fiber aggregates. Combining relatively small helical pitch with long-range order, the striped twist-bent mesophase of DPP-T2F2 composed of highly ordered, more rigid 1D fiber aggregate exhibits an anisotropic dissymmetry factor (g-factor) as high as 0.09. This study can be a prominent addition to our knowledge on a solution-state hierarchical assembly of conjugated polymers and, in particular, chiral helical assembly of achiral organic semiconductors that can catalyze an emerging field of chiral (opto)electronics.

7.
Nat Commun ; 13(1): 2738, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585050

RESUMEN

Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature and synthetic soft materials. While it was recently discovered that achiral but bent-core mesogens can also form chiral helices, the assembly of chiral microstructures from achiral polymers has rarely been explored. Here, we reveal chiral emergence from achiral conjugated polymers, in which hierarchical helical structures are developed through a multistep assembly pathway. Upon increasing concentration beyond a threshold volume fraction, dispersed polymer nanofibers form lyotropic liquid crystalline (LC) mesophases with complex, chiral morphologies. Combining imaging, X-ray and spectroscopy techniques with molecular simulations, we demonstrate that this structural evolution arises from torsional polymer molecules which induce multiscale helical assembly, progressing from nano- to micron scale helical structures as the solution concentration increases. This study unveils a previously unknown complex state of matter for conjugated polymers that can pave way to a field of chiral (opto)electronics. We anticipate that hierarchical chiral helical structures can profoundly impact how conjugated polymers interact with light, transport charges, and transduce signals from biomolecular interactions and even give rise to properties unimagined before.


Asunto(s)
Cristales Líquidos , Polímeros , Cristales Líquidos/química , Polímeros/química , Estereoisomerismo
8.
Adv Mater ; 34(32): e2203055, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35724384

RESUMEN

Tuning structures of solution-state aggregation and aggregation-mediated assembly pathways of conjugated polymers is crucial for optimizing their solid-state morphology and charge-transport property. However, it remains challenging to unravel and control the exact structures of solution aggregates, let alone to modulate assembly pathways in a controlled fashion. Herein, aggregate structures of an isoindigo-bithiophene-based polymer (PII-2T) are modulated by tuning selectivity of the solvent toward the side chain versus the backbone, which leads to three distinct assembly pathways: direct crystallization from side-chain-associated amorphous aggregates, chiral liquid crystal (LC)-mediated assembly from semicrystalline aggregates with side-chain and backbone stacking, and random agglomeration from backbone-stacked semicrystalline aggregates. Importantly, it is demonstrated that the amorphous solution aggregates, compared with semicrystalline ones, lead to significantly improved alignment and reduced paracrystalline disorder in the solid state due to direct crystallization during the meniscus-guided coating process. Alignment quantified by the dichroic ratio is enhanced by up to 14-fold, and the charge-carrier mobility increases by a maximum of 20-fold in films printed from amorphous aggregates compared to those from semicrystalline aggregates. This work shows that by tuning the precise structure of solution aggregates, the assembly pathways and the resulting thin-film morphology and device properties can be drastically tuned.

9.
ACS Polym Au ; 2(4): 232-244, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35971423

RESUMEN

Bottlebrush polymers are a class of semiflexible, hierarchical macromolecules with unique potential for shape-, architecture-, and composition-based structure-property design. It is now well-established that in dilute to semidilute solution, bottlebrush homopolymers adopt a wormlike conformation, which decreases in extension (persistence length) as the concentration and molecular overlap increase. By comparison, the solution phase self-assembly of bottlebrush diblock copolymers (BBCP) in a good solvent remains poorly understood, despite critical relevance for solution processing of ordered phases and photonic crystals. In this work, we combine small-angle X-ray scattering, coarse-grained simulation, and polymer synthesis to map the equilibrium phase behavior and conformation of a set of large, nearly symmetric PS-b-PLA bottlebrush diblock copolymers in toluene. Three BBCP are synthesized, with side chains of number-averaged molecular weights of 4500 (PS) and 4200 g/mol (PLA) and total backbone degrees of polymerization of 100, 255, and 400 repeat units. The grafting density is one side chain per backbone repeat unit. With increasing concentration in solution, all three polymers progress through a similar structural transition: from dispersed, wormlike chains with concentration-dependent (decreasing) extension, through the onset of disordered PS/PLA compositional fluctuations, to the formation of a long-range ordered lamellar phase. With increasing concentration in the microphase-separated regimes, the domain spacing increases as individual chains partially re-extend due to block immiscibility. Increases in the backbone degree of polymerization lead to changes in the scattering profiles which are consistent with the increased segregation strength. Coarse-grained simulations using an implicit side-chain model are performed, and concentration-dependent self-assembly behavior is qualitatively matched to experiments. Finally, using the polymer with the largest backbone length, we demonstrate that lamellar phases develop a well-defined photonic band gap in solution, which can be tuned across the visible spectrum by varying polymer concentration.

10.
Sci Adv ; 6(24): eaaz7202, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32577511

RESUMEN

Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.

11.
Sci Adv ; 5(8): eaaw7757, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31448330

RESUMEN

Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions.

12.
ACS Appl Mater Interfaces ; 10(47): 40692-40701, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30375845

RESUMEN

Meniscus instability during meniscus-guided solution coating and printing of conjugated polymers has a significant impact on the deposit morphology and the charge-transport characteristics. The lack of quantitative investigation on meniscus-instability-induced morphology transition for conjugated polymers hindered the ability to precisely control conjugated polymer deposition for desired applications. Herein, we report a film-to-stripe morphology transition caused by stick-and-slip meniscus instability during solution coating seen in multiple donor-acceptor polymer systems. We observe the coexistence of film and stripe morphologies at the critical coating speed. Surprisingly, higher charge-carrier mobility is measured in transistors fabricated from stripes despite their same deposition condition as the films at the critical speed. To understand the origin of the morphology transition, we further construct a generalizable surface free energy model to validate the hypothesis that the morphology transition occurs to minimize the system surface free energy. As the system surface free energy varies during a stick-and-slip cycle, we focus on evaluating the maximum surface free energy at a given condition, which corresponds to the sticking state right before slipping. Indeed, we observe the increase of the maximum system surface free energy with the increase in coating speed prior to film-to-stripe morphology transition and an abrupt drop in the maximum system surface free energy post-transition when the coating speed is further increased, which is associated with the reduced meniscus length during stripe deposition. Such an energetic change originates from the competition between pinning and depinning forces on a partial wetting substrate which underpins the film-to-stripe transition. This work establishes a quantitative approach for understanding meniscus-instability-induced morphology transition during solution coating. The mechanistic understanding may further facilitate the use of meniscus instability for lithography-free patterning or to suppress instability for highly homogeneous thin film deposition.

13.
Cyberpsychol Behav Soc Netw ; 17(5): 317-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24611768

RESUMEN

Abstract Social networking technologies can influence attitudes, behaviors, and social norms. Research on this topic has been conducted primarily among early adopters of technology and within the United States. However, it is important to evaluate how social media might affect people's behaviors in international settings, especially among countries with longstanding, government recommended, cultural and religious traditions and behaviors, such as Iran. This study seeks to assess whether Iranian women who have been using social networking technologies for a longer time (compared to those who have recently joined) would be less likely to cover themselves with a veil and be more comfortable publicly displaying pictures of this behavior on Facebook. Iranian females (N=253) were selected through snowball sampling from nongovernmental organizations in November 2011 and asked to complete a survey assessing their use of Facebook, concerns about not wearing a veil in Facebook pictures, and their actual likelihood of wearing a veil. Items were combined to measure lack of interest in wearing a veil. Length of time as a Facebook user was significantly associated with not wearing a veil (b=0.16, p<0.01), controlling for age, education, and frequency of using Facebook. Results also revealed a significant relationship such that older people were more likely to adhere to the religious behavior of wearing a veil (b=-0.45, p<0.01). Social networking technologies can affect attitudes and behaviors internationally. We discuss methods of using social media for self-presentation and expression, as well as the difficulties (and importance) of studying use of technologies, such as social media, internationally.


Asunto(s)
Vestuario , Islamismo/psicología , Red Social , Adolescente , Adulto , Femenino , Humanos , Irán , Encuestas y Cuestionarios , Adulto Joven
14.
PLoS One ; 9(7): e103790, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076208

RESUMEN

INTRODUCTION: Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. MATERIALS AND METHODS: African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. RESULTS: Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. DISCUSSION: Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method.


Asunto(s)
Infecciones por VIH/diagnóstico , Juego de Reactivos para Diagnóstico/provisión & distribución , Autoevaluación Diagnóstica , Homosexualidad Masculina , Humanos , Masculino , Investigación Cualitativa
15.
Science ; 345(6199): 906-9, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25146284

RESUMEN

Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.

16.
J Consum Health Internet ; 17(4): 353-361, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24526928

RESUMEN

This study seeks to investigate qualities of peer leaders in a social media-based peer-led HIV intervention. African American and Latino men who have sex with men (MSM) peer leaders were recruited through online/offline methods. They were required to have experience with health communication and social media. Over 57% of reported using social networking for seeking sex partners within 3 months. Over 53% spent over 3 hours per week online and about 53% of peer leaders had fewer than 200 Facebook friends. Results suggest that peer leaders can be recruited for social media-based health interventions. Qualities of peer leaders are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA