Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Proteome Res ; 19(1): 391-400, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31689115

RESUMEN

Motile cilia of multiciliated epithelial cells have important roles in animal development and cell homeostasis. Although several studies have identified and reported proteins localized in this complex organelle and the related immotile primary cilia from various cell types, it is still challenging to isolate high quantities of ciliary proteins for proteomic analysis. In this study, African clawed frog (Xenopus laevis) embryos, which have many multiciliated cells in the epidermis, were treated with a simple ionic buffer to identify 1009 proteins conserved across vertebrates; these proteins were putatively localized in motile cilia. Using two ciliary proteome databases, we confirmed that previously validated cilia-associated proteins are highly enriched in our ciliary proteome. Proteins localized at the transition zone and Ellis-van Creveld zone, which are distinct regions at the base of cilia, near the junction with the apical cell surface, were isolated using our method. Among the newly identified ciliary proteins, we report that KRT17 may have an unrecognized function in motile cilia. Hence, the method developed in this study would be useful for understanding the ciliary proteome.


Asunto(s)
Cilios/metabolismo , Queratina-17/metabolismo , Proteómica/métodos , Proteínas de Xenopus/análisis , Animales , Cilios/fisiología , Embrión no Mamífero/citología , Epidermis/metabolismo , Femenino , Queratina-17/genética , Masculino , Reproducibilidad de los Resultados , Xenopus/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
2.
Biomed Pharmacother ; 174: 116434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513592

RESUMEN

The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.


Asunto(s)
Cilios , Daño del ADN , Mebendazol , Xenopus laevis , Cilios/efectos de los fármacos , Cilios/metabolismo , Daño del ADN/efectos de los fármacos , Animales , Mebendazol/farmacología , Humanos , Antineoplásicos/farmacología , Sinergismo Farmacológico , Línea Celular Tumoral , Embrión no Mamífero/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo
3.
Genes Genomics ; 45(2): 157-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36508087

RESUMEN

BACKGROUND: Motile cilia in a vertebrate are important to sustaining activities of life. Fluid flow on the apical surface of several tissues, including bronchial epithelium, ependymal epithelium, and fallopian tubules is generated by the ciliary beating of motile cilia. Multi-ciliated cells in ependymal tissue are responsible for the circulation of cerebrospinal fluid (CSF), which is essential for the development and homeostasis of the central nervous system, and airway tissues are protected from external contaminants by cilia-driven mucosal flow over the top of the airway epithelium. OBJECTIVE: A previous study reported that reduction of Ribc2 protein leads to disruption of ciliary beating in multi-ciliated cells. However, knowledge regarding the molecular function of Ribc2 is limited, thus currently available information is also limited. Therefore, we evaluated the importance of proteins involved in the interaction with Ribc2 in the process of ciliary beating. METHODS: Immunoprecipitation and mass spectrometry analysis was performed for the discovery of proteins involved in the interaction with Ribc2. Expression of the target gene was inhibited by injection of antisense morpholinos and measurement of the fluid flow on the embryonic epidermis of Xenopus was performed using fluorescent beads for examination of the ciliary beating of multi cilia. In addition, the flag-tagged protein was expressed by injection of mRNA and the changes in protein localization in the cilia were measured by immunostaining and western blot analysis for analysis of the molecular interaction between Ribc2 and Ribc2 binding proteins in multi-cilia. RESULTS: The IP/MS analysis identified Ckb and Ybx2 as Ribc2 binding proteins and our results showed that localization of both Ckb and Ybx2 occurs at the axoneme of multi-cilia on the embryonic epithelium of Xenopus laevis. In addition, our findings confirmed that knock-down of Ckb or Ybx2 resulted in abnormal ciliary beating and reduction of cilia-driven fluid flow on multi-cilia of Xenopus laevis. In addition, significantly decreased localization of Ckb or Ybx2 in the ciliary axoneme was observed in Ribc2-depleted multi-cilia. CONCLUSION: Ckb and Ybx2 are involved in the interaction with Ribc2 and are necessary for the ciliary beating of multi-cilia.


Asunto(s)
Axonema , Cilios , Animales , Axonema/metabolismo , Cilios/genética , Cilios/metabolismo , Epidermis , Xenopus laevis , Proteínas de Xenopus
4.
Genes Genomics ; 44(4): 405-413, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066808

RESUMEN

BACKGROUND: Cell migration is a basic cellular behavior involved in multiple phenomena in the human body such as embryonic development, wound healing, immune reactions, and cancer metastasis. For proper cell migration, integrin and the ECM binding complex must be disassembled for the retraction of trailing edges. OBJECTIVE: Integrin must be differentially regulated at leading edges or trailing edges during cell migration. Previously, we showed that ITGBL1 was a secreted protein and inhibits integrin activity. Therefore, we examined the function of ITGBL1 on the retraction of trailing edges during cell migration. METHODS: To examined the function of ITGBL1 on cell migration, we knocked-down or overexpressed ITGBL1 by using ITGBL1 siRNA or ITGBL1 plasmid DNA in human chondrocytes or ATDC5 cells. We then characterized cellular migration and directionality by performing wound healing assays. Also, to analyze leading-edge formation and trailing-edge retraction, we labeled cell membranes with membrane-GFP and performed live imaging of migrating cells and. Finally, we specifically detected active forms of integrin, FAK and Vinculin using specific antibodies upon ITGBL1 depletion or overexpression. RESULT: In this study, ITGBL1 preferentially inhibited integrin activity at the trailing edges to promote cell migration. ITGBL1-depleted cells showed increased focal adhesions at the membranous traces of trailing edges to prevent the retraction of trailing edges. In contrast, overexpression of ITGBL1 upregulated directional cell migration by promoting focal adhesion disassembly at the trailing edges. CONCLUSION: ITGBL1 facilitates directional cell migration by promoting disassembly of the trailing edge focal adhesion complex.


Asunto(s)
Matriz Extracelular , Adhesiones Focales , Integrina beta1 , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo
5.
Sci Adv ; 8(3): eabl4222, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061535

RESUMEN

Chondrocytes secrete massive extracellular matrix (ECM) molecules that are produced, folded, and modified in the endoplasmic reticulum (ER). Thus, the ER-associated degradation (ERAD) complex-which removes misfolded and unfolded proteins to maintain proteostasis in the ER- plays an indispensable role in building and maintaining cartilage. Here, we examined the necessity of the ERAD complex in chondrocytes for cartilage formation and maintenance. We show that ERAD gene expression is exponentially increased during chondrogenesis, and disruption of ERAD function causes severe chondrodysplasia in developing embryos and loss of adult articular cartilage. ERAD complex malfunction also causes abnormal accumulation of cartilage ECM molecules and subsequent chondrodysplasia. ERAD gene expression is decreased in damaged cartilage from patients with osteoarthritis (OA), and disruption of ERAD function in articular cartilage leads to cartilage destruction in a mouse OA model.

6.
Elife ; 112022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36004726

RESUMEN

The gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein α1 (GJA1) is the most commonly expressed subunit. A recent study showed that GJA1 is necessary for the maintenance of motile cilia; however, the molecular mechanism and function of GJA1 in ciliogenesis remain unknown. Here, we examined the functions of GJA1 during ciliogenesis in human retinal pigment epithelium-1 and Xenopus laevis embryonic multiciliated-cells. GJA1 localizes to the motile ciliary axonemes or pericentriolar regions beneath the primary cilium. GJA1 depletion caused malformation of both the primary cilium and motile cilia. Further study revealed that GJA1 depletion affected several ciliary proteins such as BBS4, CP110, and Rab11 in the pericentriolar region and basal body. Interestingly, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, a key regulator during ciliogenesis, was immunoprecipitated with GJA1 and GJA1 knockdown caused the mislocalization of Rab11. These findings suggest that GJA1 regulates ciliogenesis by interacting with the Rab11-Rab8 ciliary trafficking pathway.


Asunto(s)
Centriolos , Cilios , Animales , Cuerpos Basales , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Conexina 43/metabolismo , Humanos , Xenopus laevis
7.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305454

RESUMEN

Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-ß-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.


Asunto(s)
Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrogénesis , Integrina beta1/metabolismo , Osteoartritis/metabolismo , Osteoartritis/prevención & control , Anciano , Animales , Diferenciación Celular , Línea Celular Tumoral , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Matriz Extracelular/metabolismo , Cara/embriología , Regulación de la Expresión Génica , Humanos , Articulaciones/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Persona de Mediana Edad , Osteoartritis/genética , Osteoartritis/patología , Xenopus/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA