Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563223

RESUMEN

In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the 'beiging'-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1-and most probably HDL-C-regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics.


Asunto(s)
Adipocitos Beige , Apolipoproteína A-I , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Médula Ósea/metabolismo , Ratones , Ratones Noqueados , Obesidad/metabolismo
2.
Diabetologia ; 64(9): 1917-1926, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34255113

RESUMEN

HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.


Asunto(s)
Diabetes Mellitus Tipo 2 , Apolipoproteínas , HDL-Colesterol , Homeostasis , Humanos
3.
Lab Invest ; 98(12): 1516-1526, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30206314

RESUMEN

During the past few years, considerable evidence has uncovered a strong relationship between fat and bone metabolism. Consequently, alterations in plasma lipid metabolic pathways strongly affect bone mass and quality. We recently showed that the deficiency of apolipoprotein A-1 (APOA1), a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, results in reduced bone mass in C57BL/6 mice. It is documented that apolipoprotein E (APOE), a lipoprotein know for its atheroprotective functions and de novo biogenesis of HDL-C, is associated with the accumulation of fat in the liver and other organs and regulates bone mass in mice. We further studied the mechanism of APOE in bone metabolism using well-characterized APOE knockout mice. We found that bone mass was remarkably reduced in APOE deficient mice fed Western-type diet (WTD) compared to wild type counterparts. Static (microCT-based) and dynamic histomorphometry showed that the reduced bone mass in APOΕ-/- mice is attributed to both decreased osteoblastic bone synthesis and elevated osteoclastic bone resorption. Interestingly, histologic analysis of femoral sections revealed a significant reduction in the number of bone marrow lipoblasts in APOΕ-/- compared to wild type mice under WTD. Analyses of whole bone marrow cells obtained from femora of both animal groups showed that APOE null mice had significantly reduced levels of the osteoblastic (RUNX2 and Osterix) and lipoblastic (PPARγ and CEBPα) cardinal regulators. Additionally, the modulators of bone remodeling RANK, RANKL, and cathepsin K were greatly increased, while OPG and the OPG/RANKL ratio were remarkably decreased in APOΕ-/- mice fed WTD, compared to their wild-type counterparts. These findings suggest that APOE deficiency challenged with WTD reduces osteoblastic and lipoblastic differentiation and activity, whereas it enhances osteoclastic function, ultimately resulting in reduced bone mass, in mice.


Asunto(s)
Apolipoproteínas E/deficiencia , Huesos/fisiología , Diferenciación Celular , Dieta Occidental/efectos adversos , Adiposidad , Animales , Peso Corporal , Médula Ósea/fisiología , Lipogénesis , Ratones Endogámicos C57BL , Osteoblastos/fisiología , Osteoclastos/fisiología
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 471-480, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29154926

RESUMEN

Apolipoprotein E (APOE) has been strongly implicated in the development of diet induced obesity. In the present study, we investigated the contribution of brain and peripherally expressed human apolipoprotein E3 (APOE3), the most common human isoform, to diet induced obesity. In our studies APOE3 knock-in (Apoe3knock-in), Apoe-deficient (apoe-/-) and brain-specific expressing APOE3 (Apoe3brain) mice were fed western-type diet for 12week and biochemical analyses were performed. Moreover, AAV-mediated gene transfer of APOE3 to apoe-/- mice was employed, as a means to achieve APOE3 expression selectively in periphery, since peripherally expressed APOE does not cross blood brain barrier (BBB) or blood-cerebrospinal fluid barrier (BCSFB). Our data suggest a bimodal role of APOE3 in visceral white adipose tissue (WAT) mitochondrial metabolic activation that is highly dependent on its site of expression and independent of postprandial dietary lipid deposition. Our findings indicate that brain APOE3 expression is associated with a potent inhibition of visceral WAT mitochondrial oxidative phosphorylation, leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, peripherally expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Apolipoproteínas E/metabolismo , Dieta Occidental/efectos adversos , Obesidad/metabolismo , Animales , Apolipoproteínas E/genética , Peso Corporal , Encéfalo/metabolismo , Colesterol/sangre , Colesterol/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Mitocondrias/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Unión Proteica , Triglicéridos/metabolismo
5.
J Lipid Res ; 58(9): 1869-1883, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28701354

RESUMEN

APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Apolipoproteína C-III/genética , Pleiotropía Genética , Lipoproteínas HDL/metabolismo , Adenosina Trifosfato/biosíntesis , Adenoviridae/genética , Animales , Antioxidantes/metabolismo , Transporte Biológico/genética , Colesterol/metabolismo , Metabolismo Energético/genética , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
6.
Biochemistry ; 55(27): 3752-62, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27332083

RESUMEN

In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apolipoprotein E (Apoe) is also capable of promoting the de novo biogenesis of HDL with the participation of ATP binding cassette A lipid transporter member 1 (Abca1) and plasma enzyme lecithin:cholesterol acyltransferase (Lcat), in a manner independent of a functional Apoa1. Here, we performed a comparative analysis of the functions of these HDL subpopulations. Specifically, Apoe and Apoa1 double-deficient (Apoe(-/-) × Apoa1(-/-)) mice were infected with APOA1- or APOE3-expressing adenoviruses, and APOA1-containing HDL (APOA1-HDL) and APOE3-containing HDL (APOE3-HDL), respectively, were isolated and analyzed by biochemical and physicochemical methods. Western blot and lipidomic analyses indicated significant differences in the apolipoprotein and lipid composition of the two HDL species. Moreover APOE3-HDL presented a markedly reduced antioxidant potential and Abcg1-mediated cholesterol efflux capacity. Surprisingly, APOE3-HDL but not APOA1-HDL attenuated LPS-induced production of TNFα in RAW264.7 cells, suggesting that the anti-inflammatory effects of APOA1 are dependent on APOE expression. Taken together, our data indicate that APOA1 and APOE3 recruit different apolipoproteins and lipids on the HDL particle, leading to structurally and functionally distinct HDL subpopulations. The distinct role of these two apolipoproteins in the modulation of HDL functionality may pave the way toward the development of novel pharmaceuticals that aim to improve HDL functionality.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apolipoproteína A-I/fisiología , Apolipoproteínas E/fisiología , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacología , Animales , Western Blotting , Células Cultivadas , Colesterol/metabolismo , Femenino , Humanos , Lípidos/sangre , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Biochim Biophys Acta ; 1852(10 Pt A): 2106-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26170061

RESUMEN

HDL has important immunomodulatory properties, including the attenuation of lipopolysaccharide (LPS)-induced inflammatory response. As lecithin-cholesterol acyltransferase (LCAT) is a critical enzyme in the maturation of HDL we investigated whether LCAT-deficient (Lcat(-/-)) mice present an increased LPS-induced inflammatory response. LPS (100µg/kg body weight)-induced cytokine response in Lcat(-/-) mice was markedly enhanced and prolonged compared to wild-type mice. Importantly, reintroducing LCAT expression using adenovirus-mediated gene transfer reverted their phenotype to that of wild-type mice. Ex vivo stimulation of whole blood with LPS (1-100ng/mL) showed a similar enhanced pro-inflammatory phenotype. Further characterization in RAW 264.7 macrophages in vitro showed that serum and HDL, but not chylomicrons, VLDL or the lipid-free protein fraction of Lcat(-/-) mice, had a reduced capacity to attenuate the LPS-induced TNFα response. Analysis of apolipoprotein composition revealed that LCAT-deficient HDL lacks significant amounts of ApoA-I and ApoA-II and is primarily composed of ApoE, while HDL from Apoa1(-/-) mice is highly enriched in ApoE and ApoA-II. ApoA-I-deficiency did not affect the capacity of HDL to neutralize LPS, though Apoa1(-/-) mice showed a pronounced LPS-induced cytokine response. Additional immunophenotyping showed that Lcat(-/-) , but not Apoa1(-/-) mice, have markedly increased circulating monocyte numbers as a result of increased Cd11b(+)Ly6C(med) monocytes, whereas 'pro-inflammatory' Cd11b(+)Ly6C(hi) monocytes were reduced. In line with this observation, peritoneal macrophages of Lcat(-/-) mice showed a markedly dampened LPS-induced TNFα response. We conclude that LCAT-deficiency increases LPS-induced inflammation in mice due to reduced LPS-neutralizing capacity of immature discoidal HDL and increased monocyte number.

8.
Am J Physiol Endocrinol Metab ; 310(1): E1-E14, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26530157

RESUMEN

Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.


Asunto(s)
Lipoproteínas HDL/fisiología , Enfermedades Metabólicas/sangre , Huesos/fisiología , Intolerancia a la Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL/sangre , Hígado/metabolismo , Obesidad/metabolismo , Sepsis/metabolismo
9.
Lab Invest ; 96(7): 763-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27088511

RESUMEN

Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We conclude that the apoA-1 deficiency generates changes in the bone cell precursor population that increase adipoblast, and decrease osteoblast production resulting in reduced bone mass and impaired bone quality in mice.


Asunto(s)
Adipocitos/metabolismo , Apolipoproteína A-I/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Adipocitos/citología , Adipogénesis , Hormona Adrenocorticotrópica/metabolismo , Animales , Apolipoproteína A-I/deficiencia , Apolipoproteína A-I/genética , Densidad Ósea , Diferenciación Celular , Quimiocina CXCL12/genética , Hidrocortisona/biosíntesis , Lipoproteínas HDL/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/genética , Receptores de Lipoproteína/metabolismo , Receptores Depuradores de Clase B/genética
10.
Biochemistry ; 54(36): 5605-16, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26313465

RESUMEN

Scavenger receptor class B type I (SR-BI) is primarily responsible for the selective uptake of cholesteryl esters (CE) of high-density lipoprotein (HDL) by the liver and other tissues. In the present study, we show that SR-BI-deficient (scarb1(-/-)) mice are resistant to diet-induced obesity, hepatic lipid deposition, and glucose intolerance after 24 weeks of being fed a western-type diet. No differences in energy expenditure or mitochondrial function could account for the observed phenotype. Kinetic and gene expression analyses suggested reduced de novo fatty acid synthesis in scarb1(-/-) mice. Furthermore, adenosine monophosphate-activated protein kinase (AMPK)-stimulated hepatic FFA catabolism was reduced in these mice, leaving direct dietary lipid uptake from plasma as the major modulator of hepatic lipid content. Analysis of the apolipoprotein composition of plasma lipoproteins revealed a significant accumulation of apolipoprotein E (ApoE)-containing HDL and TG-rich lipoproteins in scarb1(-/-) mice that correlated with reduced plasma LpL activity. Our data suggest that scarb1(-/-) mice fed a western-type diet for 24 weeks accumulate CE- and ApoE-rich HDL of abnormal density and size. The elevated HDL-ApoE levels inhibit plasma LpL activity, blocking the clearance of triglyceride-rich lipoproteins and preventing the shuttling of dietary lipids to the liver.


Asunto(s)
Apolipoproteínas E/sangre , Grasas de la Dieta/metabolismo , Hígado/metabolismo , Receptores Depuradores de Clase B/metabolismo , Animales , Metabolismo Energético , Lipoproteína Lipasa/sangre , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Receptores Depuradores de Clase B/genética , Triglicéridos/sangre
11.
J Lipid Res ; 55(7): 1434-47, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24837748

RESUMEN

Here, we investigated how LDL receptor deficiency (Ldlr(-/-)) modulates the effects of testosterone on obesity and related metabolic dysfunctions. Though sham-operated Ldlr(-/-) mice fed Western-type diet for 12 weeks became obese and showed disturbed plasma glucose metabolism and plasma cholesterol and TG profiles, castrated mice were resistant to diet-induced obesity and had improved glucose metabolism and reduced plasma TG levels, despite a further deterioration in their plasma cholesterol profile. The effect of hypogonadism on diet-induced weight gain of Ldlr(-/-) mice was independent of ApoE and Lrp1. Indirect calorimetry analysis indicated that hypogonadism in Ldlr(-/-) mice was associated with increased metabolic rate. Indeed, mitochondrial cytochrome c and uncoupling protein 1 expression were elevated, primarily in white adipose tissue, confirming increased mitochondrial metabolic activity due to thermogenesis. Testosterone replacement in castrated Ldlr(-/-) mice for a period of 8 weeks promoted diet-induced obesity, indicating a direct role of testosterone in the observed phenotype. Treatment of sham-operated Ldlr(-/-) mice with the aromatase inhibitor exemestane for 8 weeks showed that the obesity of castrated Ldlr(-/-) mice is independent of estrogens. Overall, our data reveal a novel role of Ldlr as functional modulator of metabolic alterations associated with hypogonadism.


Asunto(s)
Grasas de la Dieta/efectos adversos , Hipogonadismo/metabolismo , Obesidad/metabolismo , Receptores de LDL/metabolismo , Testosterona/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Grasas de la Dieta/farmacología , Hipogonadismo/inducido químicamente , Hipogonadismo/genética , Hipogonadismo/patología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/patología , Receptores de LDL/genética , Testosterona/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375802

RESUMEN

High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.

13.
Nutrients ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36771314

RESUMEN

We evaluated the quality of evidence from phase III/IV clinical trials of drugs against obesity using the principles of Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. Our systematic review evaluates the quality of clinical evidence from existing clinical trials and not the pharmacological efficacy of anti-obesity therapies. A literature search using select keywords in separate was performed in PubMed and ClinicalTrials.gov databases for phase III/IV clinical trials during the last ten years. Our findings indicate that the quality of existing clinical evidence from anti-obesity trials generally ranges from low to moderate. Most trials suffered from publication bias. Less frequently, trials suffered from the risk of bias mainly due to lack of blindness in the treatment. Our work indicates that additional higher-quality clinical trials are needed to gain more confidence in the estimate of the effect of currently used anti-obesity medicines, to allow more informed clinical decisions, thus reducing the risk of implementing potentially ineffective or even harmful therapeutic strategies.


Asunto(s)
Obesidad , Humanos , Obesidad/tratamiento farmacológico , Ensayos Clínicos como Asunto
14.
Biomedicines ; 11(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37893070

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.

15.
Mol Med ; 18: 901-12, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22576368

RESUMEN

Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL). We investigated the involvement of apoA-I in diet-induced accumulation of triglycerides in hepatocytes and its potential role in the treatment of nonalcoholic fatty liver disease (NAFLD). ApoA-I-deficient (apoA-I(-/-)) mice showed increased diet-induced hepatic triglyceride deposition and disturbed hepatic histology while they exhibited reduced glucose tolerance and insulin sensitivity. Quantification of FASN (fatty acid synthase) [corrected], DGAT-1 (diacylglycerol O-acyltransferase 1), and PPARγ (peroxisome proliferator-activated receptor γ) mRNA expression suggested that the increased hepatic triglyceride content of the apoA-I(-/-) mice was not due to de novo synthesis of triglycerides. Similarly, metabolic profiling did not reveal differences in the energy expenditure between the two mouse groups. However, apoA-I(-/-) mice exhibited enhanced intestinal absorption of dietary triglycerides (3.6 ± 0.5 mg/dL/min for apoA-I(-/-) versus 2.0 ± 0.7 mg/dL/min for C57BL/6 mice, P < 0.05), accelerated clearance of postprandial triglycerides and a reduced rate of hepatic very low density lipoprotein (VLDL) triglyceride secretion (9.8 ± 1.1 mg/dL/min for apoA-I(-/-) versus 12.5 ± 1.3 mg/dL/min for C57BL/6 mice, P < 0.05). In agreement with these findings, adenovirus-mediated gene transfer of apoA-I(Milano) in apoA-I(-/-) mice fed a Western-type diet for 12 wks resulted in a significant reduction in hepatic triglyceride content and an improvement of hepatic histology and architecture. Our data extend the current knowledge on the functions of apoA-I, indicating that in addition to its well-established properties in atheroprotection, it is also an important modulator of processes associated with diet-induced hepatic lipid deposition and NAFLD development in mice. Our findings raise the interesting possibility that expression of therapeutic forms of apoA-I by gene therapy approaches may have a beneficial effect on NAFLD.


Asunto(s)
Apolipoproteína A-I/metabolismo , Dieta , Hígado Graso/metabolismo , Hígado Graso/patología , Adenoviridae/genética , Adiposidad/efectos de los fármacos , Animales , Apolipoproteína A-I/deficiencia , Peso Corporal/efectos de los fármacos , Calorimetría , Hígado Graso/sangre , Hígado Graso/genética , Conducta Alimentaria , Regulación de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Insulina/farmacología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Cinética , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Periodo Posprandial/efectos de los fármacos , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Triglicéridos/sangre , Triglicéridos/metabolismo
16.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35890117

RESUMEN

Clozapine is the gold standard for treatment-resistant schizophrenia. Serious and even life-threatening adverse effects, mostly granulocytopenia, myocarditis, and constipation, are of great clinical concern and constitute a barrier to prescribing clozapine, thus depriving many eligible patients of a lifesaving treatment option. Interestingly, clozapine presents variable pharmacokinetics affected by numerous parameters, leading to significant inter- and intra-individual variation. Therefore, therapeutic drug monitoring of plasma clozapine levels confers a significant benefit in everyday clinical practice by increasing the confidence of the prescribing doctor to the drug and the adherence of the patient to the treatment, mainly by ensuring effective treatment and limited dose-related side effects. In the present systematic review, we aimed at identifying how a full range of adverse effects relates to plasma clozapine levels, using the Jadad grading system for assessing the quality of the available clinical evidence. Our findings indicate that EEG slowing, obsessive-compulsive symptoms, heart rate variability, hyperinsulinemia, metabolic syndrome, and constipation correlate to plasma clozapine levels, whereas QTc, myocarditis, sudden death, leucopenia, neutropenia, sialorrhea, are rather unrelated. Rapid dose escalation at the initiation of treatment might contribute to the emergence of myocarditis, or leucopenia. Strategies for managing adverse effects are different in these conditions and are discussed accordingly.

17.
Front Oncol ; 11: 638288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842343

RESUMEN

Multiple myeloma (MM) is an incurable neoplastic hematologic disorder characterized by malignant plasma cells, mainly in the bone marrow. MM is associated with multiple factors, such as lipid metabolism, obesity, and age-associated disease development. Although, the precise pathogenetic mechanisms remain unknown, abnormal lipid and lipoprotein levels have been reported in patients with MM. Interestingly, patients with higher APOA1 levels, the major apolipoprotein of high density lipoprotein (HDL), have better overall survival. The limited existing studies regarding serum lipoproteins in MM are inconclusive, and often contradictory. Nevertheless, it appears that deregulation of the lipoprotein transport system may facilitate the development of the disease. Here, we provide a critical review of the literature on the role of lipids and lipoproteins in MM pathophysiology. We also propose novel mechanisms, linking the development and progression of MM to the metabolism of blood lipoproteins. We anticipate that proteomic and lipidomic analyses of serum lipoproteins along with analyses of their functionality may improve our understanding and shed light on novel mechanistic aspects of MM pathophysiology.

18.
Artículo en Inglés | MEDLINE | ID: mdl-33309975

RESUMEN

White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Apolipoproteína A-I/metabolismo , Apolipoproteína E3/metabolismo , Termogénesis , Animales , Frío , Metabolismo Energético , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mapas de Interacción de Proteínas
19.
Vascul Pharmacol ; 141: 106928, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695591

RESUMEN

Epidemiological studies during the last five years suggest that a relation between high density lipoprotein cholesterol (HDL-C) levels and the risk for cardiovascular disease (CVD) does exist but follows rather a "U-shaped" curve with an optimal range of HDL-C concentration between 40 and 70 mg/dl for men and 50-70 mg/dl for women. Moreover, as research in the field of lipoproteins progresses it becomes increasingly apparent that HDL particles possess different attributes and depending on their structural and functional characteristics, they may be "antiatherogenic" or "proatherogenic". In light of this information, it is highly doubtful that the choice of experimental drugs and the design of respective clinical trials that put the HDL-C raising hypothesis at test, were the most suitable. Here, we compile the existing literature on HDL, providing a critical up-to-date view that focuses on key data from the biochemistry, epidemiology and pharmacology of HDL, including data from clinical trials. We also discuss the most up-to-date information on the contribution of HDL structure and function to the prevention of atherosclerosis. We conclude by summarizing important differences between mouse models and humans, that may explain why pharmacological successes in mice turn out to be failures in humans.


Asunto(s)
Aterosclerosis , Enfermedad Coronaria , Lipoproteínas HDL , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , HDL-Colesterol/sangre , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/prevención & control , Modelos Animales de Enfermedad , Femenino , Humanos , Lipoproteínas HDL/sangre , Masculino , Ratones
20.
Int J Stroke ; 16(6): 738-750, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33202196

RESUMEN

This document presents the consensus recommendations of the Hellenic Stroke Organization and the Hellenic Atherosclerosis Society for lipid modification in patients with ischemic stroke or transient ischemic attack. This clinical guide summarizes the current literature on lipid management and can be of assistance to the physicians treating stroke patients in clinical practice.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Aterosclerosis/complicaciones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/terapia , Humanos , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/terapia , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA