RESUMEN
Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 and RANTES/CCL-5 release in endothelial cells. Suppression of CAR expression with a small interfering RNA abrogated the inhibitory effects of CITCO on these responses. Furthermore, CITCO increased interaction of CAR with Retinoid X Receptor (RXR) and reduced TNFα-induced p38-MAPK/NF-κB activation. In vivo, using intravital microscopy in the mouse cremasteric microcirculation treatment with the selective mouse CAR ligand TCPOBOP inhibited TNFα-induced leukocyte rolling flux, adhesion, and emigration and decreased VCAM-1 in endothelium. These results reveal that CAR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps in the leukocyte recruitment cascade. Therefore, CAR agonists may constitute a new therapeutic tool in controlling cardiovascular disease-associated inflammatory processes.
Asunto(s)
Adhesión Celular , Células Endoteliales , Leucocitos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Receptor de Androstano Constitutivo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos/metabolismo , Leucocitos/fisiología , Masculino , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genéticaRESUMEN
Drug-induced liver injury (DILI) diagnosis and classification (hepatocellular, cholestatic, and mixed) relies on traditional clinical biomarkers (eg ALT and ALP), despite limitations such as extrahepatic interferences, narrow dynamic ranges, and low mechanistic value. microRNAs may be very useful for complementing traditional DILI biomarkers but most studies in this direction have considered only paracetamol poisoning. Thus the value of microRNAs (miRNAs) as biomarkers for idiosyncratic DILI has not yet been demonstrated. In this study, we first examined the effect of model cholestatic drugs on the human hepatocyte miRNome by RNAseq and RT-qPCR. Results demonstrated that chlorpromazine, cyclosporin A, and ANIT induced (miR-21-3p, -21-5p, -22-3p, -27a-5p, -1260b, -34a-5p, and -98-5p) and repressed (-122-5p, -192-5p, -30c-5p, -424-5p, and -16-5p) specific miRNAs in sandwich-cultured upcyte hepatocytes. However, no common signature was found for cholestatic drugs. Next we investigated the levels of these miRNA in human serum and found that most were also significantly altered in cholestatic/mixed DILI patients upon hospital/ambulatory admission. However, miR-122-5p, -192-5p, -34a-5p, and -22-3p demonstrated a much more significant induction in patients with hepatocellular DILI, thus revealing better specificity for hepatocellular damage. Time-course analyses demonstrated that -1260b and -146 had a very similar profile to ALP, but with wider dynamic ranges, while -16-5p and -451a showed a negative correlation. Conversely, -122-5p and -192-5p correlated with ALT but with wider dynamic ranges and faster recoveries. Finally, the 122/451a and 122/16 ratios showed excellent prediction performances in both the study [area under the receiver operating characteristic curve (AUROC) >0.93] and the validation cohort (AUROC > 0.82), and can, therefore, be postulated for the first time as circulating miRNA biomarkers for idiosyncratic DILI.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Colestasis/sangre , Colestasis/genética , Hepatocitos/metabolismo , MicroARNs/sangre , Adulto , Biomarcadores/sangre , Línea Celular , Colestasis/inducido químicamente , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Hepatopatías , Masculino , MicroARNs/metabolismo , Persona de Mediana EdadRESUMEN
INTRODUCTION: In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Colestasis/inducido químicamente , Evaluación Preclínica de Medicamentos/métodos , Animales , Bilis/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Reproducibilidad de los ResultadosRESUMEN
Liver biopsy is currently the only reliable method to establish nonalcoholic fatty liver disease (NAFLD) severity. However, this technique is invasive and occasionally associated with severe complications. Thus, non-invasive diagnostic markers for NAFLD are needed. Former studies have postulated 18 different serum microRNA biomarkers with altered levels in NAFLD patients. In the present study, we have re-examined the predictive value of these serum microRNAs and found that 9 of them (miR-34a, -192, -27b, -122, -22, -21, -197, -30c and -16) associated to NAFLD severity in our independent cohort. Moreover, miR-192, -27b, -22, -197 and -30c appeared specific for NAFLD, when compared with patients with drug-induced liver injury. Preliminary serum RNAseq analysis allowed identifying novel potential miRNA biomarkers for nonalcoholic steatohepatitis (NASH). The classification performance of validated miRNAs (and their ratios) for NASH was better than that reached by AST, whereas for advanced fibrosis prediction miRNAs did not perform better than the FIB-4 algorithm. Cross-validated models combining both clinical and miRNA variables showed enhanced predictivity. In conclusion, the circulating microRNAs validated demonstrate a better diagnostic potential than conventional serum markers to identify NASH patients and could complement and improve current fibrosis prediction algorithms. The research in this field is still open.
Asunto(s)
MicroARN Circulante/sangre , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Índice de Severidad de la Enfermedad , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Biopsia Líquida/métodos , Hígado/patología , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Valor Predictivo de las Pruebas , PronósticoRESUMEN
Background and Aims: Drug-induced steatosis is a major reason for drug failure in clinical trials and post-marketing withdrawal; and therefore, predictive biomarkers are essential. These could be particularly relevant in non-alcoholic fatty liver disease (NAFLD), where most patients show features of the metabolic syndrome and are prescribed with combined chronic therapies, which can contribute to fatty liver. However, specific biomarkers to assess the contribution of drugs to NAFLD are lacking. We aimed to find microRNAs (miRNAs) responsive to steatotic drugs and to investigate if they could become circulating biomarkers for drug-induced steatosis. Methods: Human HepG2 cells were treated with drugs and changes in miRNA levels were measured by microarray and qRT-PCR. Drug-induced fat accumulation in HepG2 was analyzed by high-content screening and enzymatic methods. miRNA biomarkers were also analyzed in the sera of 44 biopsy-proven NAFLD patients and in 10 controls. Results: We found a set of 10 miRNAs [miR-22-5p, -3929, -24-2-5p, -663a, -29a-3p, -21 (5p and 3p), -27a-5p, -1260 and -202-3p] that were induced in human HepG2 cells and secreted to the culture medium upon incubation with model steatotic drugs (valproate, doxycycline, cyclosporin A and tamoxifen). Moreover, cell exposure to 17 common drugs for NAFLD patients showed that some of them (e.g., irbesartan, fenofibrate, and omeprazole) also induced these miRNAs and increased intracellular triglycerides, particularly in combinations. Finally, we found that most of these miRNAs (60%) were detected in human serum, and that NAFLD patients under fibrates showed both induction of these miRNAs and a more severe steatosis grade. Conclusion: Steatotic drugs induce a common set of hepatic miRNAs that could be used in drug screening during preclinical development. Moreover, most of these miRNAs are serum circulating biomarkers that could become useful in the diagnosis of iatrogenic steatosis.
RESUMEN
Disruption of the vectorial bile acid transport in the liver is a key feature of cholestatic drugs, although many causal and mechanistic aspects are still unknown. The aim of the present study was to explore if cholestatic drugs can repress or induce the expression of hepatic transporters. To this end, sandwich-cultured rat hepatocytes were treated with cholestatic and non-cholestatic (steatotic, non-hepatotoxic, etc.) drugs and the mRNA expression of 10 uptake and efflux biliary transporters was measured. Results evidenced that all cholestatic drugs cause extensive alterations in the mRNA expression of most biliary transporters. Surprisingly, nearly all steatotic drugs also affected the expression of these genes. The most frequent alterations triggered by both types of drugs were the repression of OATP1A1, NTCP and BSEP, and the induction of MRP2/3/4, MDR2 and ABCG5/8. The majority of these alterations were also observed in vivo, in the livers of treated rats. The common signature of cholestatic and steatotic drugs was the repression of OATP1A1. Indeed, ROC curve analysis indicated that OATP1A1 mRNA is a very sensitive marker to identify drugs with cholestatic or steatotic potential, with a maximal sensitivity and specificity of 0.917 and 0.941, respectively. We conclude that alteration of expression of hepatobiliary transporters is a hallmark of both cholestatic and steatotic drugs, lending support to a connection between these two mechanisms of hepatotoxicity. Moreover, OATP1A1 mRNA is proposed as a very simple and useful screening biomarker for the prediction of new cholestatic or steatotic drugs in early drug development.