Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37311449

RESUMEN

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Asunto(s)
Chlorophyta , Ecosistema , Humanos , Salinidad , Bahías , Agua de Mar/microbiología , Fotosíntesis , Fitoplancton , Clorofila
2.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992179

RESUMEN

Dinitrogen (N2) fixation represents a key source of reactive nitrogen in marine ecosystems. While the process has been rather well-explored in low latitudes of the Atlantic and Pacific Oceans, other higher latitude regions and particularly the Indian Ocean have been chronically overlooked. Here, we characterize N2 fixation and diazotroph community composition across nutrient and trace metals gradients spanning the multifrontal system separating the oligotrophic waters of the Indian Ocean subtropical gyre from the high nutrient low chlorophyll waters of the Southern Ocean. We found a sharp contrasting distribution of diazotroph groups across the frontal system. Notably, cyanobacterial diazotrophs dominated north of fronts, driving high N2 fixation rates (up to 13.96 nmol N l-1 d-1) with notable peaks near the South African coast. South of the fronts non-cyanobacterial diazotrophs prevailed without significant N2 fixation activity being detected. Our results provide new crucial insights into high latitude diazotrophy in the Indian Ocean, which should contribute to improved climate model parameterization and enhanced constraints on global net primary productivity projections.


Asunto(s)
Cianobacterias , Fijación del Nitrógeno , Agua de Mar , Océano Índico , Agua de Mar/microbiología , Cianobacterias/genética , Cianobacterias/metabolismo , Ecosistema
3.
ISME J ; 13(12): 3011-3023, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31444483

RESUMEN

Microbially induced corrosion of metallic iron (Fe0)-containing structures is an environmental and economic hazard. Methanogens are abundant in low-sulfide environments and yet their specific role in Fe0 corrosion is poorly understood. In this study, Sporomusa and Methanosarcina dominated enrichments from Baltic Sea methanogenic sediments that were established with Fe0 as the sole electron donor and CO2 as the electron acceptor. The Baltic-Sporomusa was phylogenetically affiliated to the electroactive acetogen S. silvacetica. Baltic-Sporomusa adjusted rapidly to growth on H2. On Fe0, spent filtrate enhanced growth of this acetogen suggesting that it was using endogenous enzymes to retrieve electrons and produce acetate. Previous studies have proposed that acetate produced by acetogens can feed commensal acetoclastic methanogens such as Methanosarcina. However, Baltic-methanogens could not generate methane from acetate, plus the decrease or absence of acetogens stimulated their growth. The decrease in numbers of Sporomusa was concurrent with an upsurge in Methanosarcina and increased methane production, suggesting that methanogens compete with acetogens for electrons from Fe0. Furthermore, Baltic-methanogens were unable to use H2 (1.5 atm) for methanogenesis and were inhibited by spent filtrate additions, indicating that enzymatically produced H2 is not a favorable electron donor. We hypothesize that Baltic-methanogens retrieve electrons from Fe0 via a yet enigmatic direct electron uptake mechanism.


Asunto(s)
Acetatos/metabolismo , Firmicutes/metabolismo , Hierro/metabolismo , Metano/metabolismo , Methanosarcina/metabolismo , Agua de Mar/microbiología , Corrosión , Electrones , Firmicutes/clasificación , Firmicutes/genética , Hierro/química , Methanosarcina/clasificación , Methanosarcina/genética , Oxidación-Reducción , Filogenia
4.
Nat Commun ; 9(1): 1729, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712903

RESUMEN

Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called "cryptic sulfur cycle". We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, U Thioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of U T. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters.


Asunto(s)
Crecimiento Quimioautotrófico/fisiología , Gammaproteobacteria/metabolismo , Redes y Vías Metabólicas/fisiología , Agua de Mar/química , Azufre/metabolismo , Organismos Acuáticos , Gammaproteobacteria/clasificación , Gammaproteobacteria/crecimiento & desarrollo , Nitrógeno/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Perú , Filogenia , Agua de Mar/microbiología
5.
Nat Microbiol ; 1(11): 16163, 2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27617976

RESUMEN

Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium1,2. Other smaller N2-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans3-6. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ∼20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.


Asunto(s)
Cianobacterias/metabolismo , Ciclo del Nitrógeno , Fijación del Nitrógeno , Agua de Mar/microbiología , Regiones Antárticas , Océano Atlántico , Nitrogenasa/metabolismo , ARN Ribosómico 16S , Simbiosis
6.
PLoS One ; 10(7): e0133526, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26192623

RESUMEN

Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.


Asunto(s)
Compuestos de Amonio/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Agua de Mar/microbiología , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Bacterias Aerobias/metabolismo , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Metagenoma/genética , Namibia , Océanos y Mares , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Perú , Agua de Mar/química , Transcriptoma/genética
7.
Gigascience ; 4: 27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097697

RESUMEN

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.


Asunto(s)
Biología Marina , Biodiversidad , Sistemas de Administración de Bases de Datos , Metagenómica , Océanos y Mares
8.
PLoS One ; 8(8): e68661, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990875

RESUMEN

In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.


Asunto(s)
Bacterias/genética , Crecimiento Quimioautotrófico/fisiología , Sulfuro de Hidrógeno/química , Oxígeno/química , Agua de Mar/química , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomasa , Ciclo del Carbono , Dióxido de Carbono/química , Análisis por Conglomerados , Coloides/química , Ecosistema , Citometría de Flujo/métodos , Genoma Bacteriano , Nitrógeno/química , Océano Pacífico , Perú , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Sulfuros/química , Microbiología del Agua
9.
Methods Mol Biol ; 668: 51-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20830555

RESUMEN

Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.


Asunto(s)
Bacterias/genética , Biblioteca de Genes , Metagenoma , Metagenómica/métodos , Agua de Mar/microbiología , ADN/análisis , ADN/aislamiento & purificación , ADN Ribosómico/análisis , ADN Ribosómico/clasificación , ADN Ribosómico/aislamiento & purificación , Humanos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA