Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(27): e2300241, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36932894

RESUMEN

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

2.
Microsc Microanal ; : 1-11, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039098

RESUMEN

In the present paper, as part of an interdisciplinary research project (Priority Programme SPP2045), we propose a possible way to design an open access archive for particle-discrete tomographic datasets: the PARROT database (https://parrot.tu-freiberg.de). This archive is the result of a pilot study in the field of particle technology and three use cases are presented for illustrative purposes. Instead of providing a detailed instruction manual, we focus on the methodologies of such an archive. The presented use cases stem from our working group and are intended to demonstrate the advantage of using such an archive with concise and consistent data for potential and ongoing studies. Data and metadata merely serve as examples and need to be adapted for disciplines not concerned here. Since all datasets within the PARROT database and its source code are freely accessible, this study represents a starting point for similar projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA