Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 13(7): e10240, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37424939

RESUMEN

Studying wildlife space use in human-modified environments contributes to characterize wildlife-human interactions to assess potential risks of zoonotic-pathogens transmission, and to pinpoint conservation issues. In central African rainforests with human dwelling and activities, we conducted a telemetry study on a group of males of Hypsignathus monstrosus, a lek-mating fruit bat identified as a potential maintenance host for Ebola virus. During a lekking season in 2020, we investigated the foraging-habitat selection and the individual nighttime space use during both mating and foraging activities close to villages and their surrounding agricultural landscape. At night, marked individuals strongly selected agricultural lands and more generally areas near watercourses to forage, where they spent more time compared to forest ones. Furthermore, the probability and duration of the presence of bats in the lek during nighttime decreased with the distance to their roost site but remained relatively high within a 10 km radius. Individuals adjusted foraging behaviors according to mating activity by reducing both the overall time spent in foraging areas and the number of forest areas used to forage when they spent more time in the lek. Finally, the probability of a bat revisiting a foraging area in the following 48 hours increased with the previous time spent in that foraging area. These behaviors occurring close to or in human-modified habitats can trigger direct and indirect bat-human contacts, which could thus facilitate pathogen transmission such as Ebola virus.

2.
Mov Ecol ; 8(1): 46, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33292573

RESUMEN

BACKGROUND: Improved understanding of the foraging ecology of bats in the face of ongoing habitat loss and modification worldwide is essential to their conservation and maintaining the substantial ecosystem services they provide. It is also fundamental to assessing potential transmission risks of zoonotic pathogens in human-wildlife interfaces. We evaluated the influence of environmental and behavioral variables on the foraging patterns of Pteropus lylei (a reservoir of Nipah virus) in a heterogeneous landscape in Cambodia. METHODS: We employed an approach based on animal-movement modeling, which comprised a path-segmentation method (hidden Markov model) to identify individual foraging-behavior sequences in GPS data generated by eight P. lylei. We characterized foraging localities, foraging activity, and probability of returning to a given foraging locality over consecutive nights. Generalized linear mixed models were also applied to assess the influence of several variables including proxies for energetic costs and quality of foraging areas. RESULTS: Bats performed few foraging bouts (area-restricted searches) during a given night, mainly in residential areas, and the duration of these decreased during the night. The probability of a bat revisiting a given foraging area within 48 h varied according to the duration previously spent there, its distance to the roost site, and the corresponding habitat type. We interpret these fine-scale patterns in relation to global habitat quality (including food-resource quality and predictability), habitat-familiarity and experience of each individual. CONCLUSIONS: Our study provides evidence that heterogeneous human-made environments may promote complex patterns of foraging-behavior and short-term re-visitation in fruit bat species that occur in such landscapes. This highlights the need for similarly detailed studies to understand the processes that maintain biodiversity in these environments and assess the potential for pathogen transmission in human-wildlife interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA