Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Radiology ; 302(3): 627-636, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931859

RESUMEN

Background Missed fractures are a common cause of diagnostic discrepancy between initial radiographic interpretation and the final read by board-certified radiologists. Purpose To assess the effect of assistance by artificial intelligence (AI) on diagnostic performances of physicians for fractures on radiographs. Materials and Methods This retrospective diagnostic study used the multi-reader, multi-case methodology based on an external multicenter data set of 480 examinations with at least 60 examinations per body region (foot and ankle, knee and leg, hip and pelvis, hand and wrist, elbow and arm, shoulder and clavicle, rib cage, and thoracolumbar spine) between July 2020 and January 2021. Fracture prevalence was set at 50%. The ground truth was determined by two musculoskeletal radiologists, with discrepancies solved by a third. Twenty-four readers (radiologists, orthopedists, emergency physicians, physician assistants, rheumatologists, family physicians) were presented the whole validation data set (n = 480), with and without AI assistance, with a 1-month minimum washout period. The primary analysis had to demonstrate superiority of sensitivity per patient and the noninferiority of specificity per patient at -3% margin with AI aid. Stand-alone AI performance was also assessed using receiver operating characteristic curves. Results A total of 480 patients were included (mean age, 59 years ± 16 [standard deviation]; 327 women). The sensitivity per patient was 10.4% higher (95% CI: 6.9, 13.9; P < .001 for superiority) with AI aid (4331 of 5760 readings, 75.2%) than without AI (3732 of 5760 readings, 64.8%). The specificity per patient with AI aid (5504 of 5760 readings, 95.6%) was noninferior to that without AI aid (5217 of 5760 readings, 90.6%), with a difference of +5.0% (95% CI: +2.0, +8.0; P = .001 for noninferiority). AI shortened the average reading time by 6.3 seconds per examination (95% CI: -12.5, -0.1; P = .046). The sensitivity by patient gain was significant in all regions (+8.0% to +16.2%; P < .05) but shoulder and clavicle and spine (+4.2% and +2.6%; P = .12 and .52). Conclusion AI assistance improved the sensitivity and may even improve the specificity of fracture detection by radiologists and nonradiologists, without lengthening reading time. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Link and Pedoia in this issue.


Asunto(s)
Inteligencia Artificial , Errores Diagnósticos/prevención & control , Fracturas Óseas/diagnóstico por imagen , Mejoramiento de la Calidad , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad
2.
Radiology ; 300(1): 120-129, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33944629

RESUMEN

Background The interpretation of radiographs suffers from an ever-increasing workload in emergency and radiology departments, while missed fractures represent up to 80% of diagnostic errors in the emergency department. Purpose To assess the performance of an artificial intelligence (AI) system designed to aid radiologists and emergency physicians in the detection and localization of appendicular skeletal fractures. Materials and Methods The AI system was previously trained on 60 170 radiographs obtained in patients with trauma. The radiographs were randomly split into 70% training, 10% validation, and 20% test sets. Between 2016 and 2018, 600 adult patients in whom multiview radiographs had been obtained after a recent trauma, with or without one or more fractures of shoulder, arm, hand, pelvis, leg, and foot, were retrospectively included from 17 French medical centers. Radiographs with quality precluding human interpretation or containing only obvious fractures were excluded. Six radiologists and six emergency physicians were asked to detect and localize fractures with (n = 300) and fractures without (n = 300) the aid of software highlighting boxes around AI-detected fractures. Aided and unaided sensitivity, specificity, and reading times were compared by means of paired Student t tests after averaging of performances of each reader. Results A total of 600 patients (mean age ± standard deviation, 57 years ± 22; 358 women) were included. The AI aid improved the sensitivity of physicians by 8.7% (95% CI: 3.1, 14.2; P = .003 for superiority) and the specificity by 4.1% (95% CI: 0.5, 7.7; P < .001 for noninferiority) and reduced the average number of false-positive fractures per patient by 41.9% (95% CI: 12.8, 61.3; P = .02) in patients without fractures and the mean reading time by 15.0% (95% CI: -30.4, 3.8; P = .12). Finally, stand-alone performance of a newer release of the AI system was greater than that of all unaided readers, including skeletal expert radiologists, with an area under the receiver operating characteristic curve of 0.94 (95% CI: 0.92, 0.96). Conclusion The artificial intelligence aid provided a gain of sensitivity (8.7% increase) and specificity (4.1% increase) without loss of reading speed. © RSNA, 2021 Online supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , Fracturas Óseas/diagnóstico por imagen , Médicos/estadística & datos numéricos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiólogos/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
3.
Eur J Radiol ; 154: 110447, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921795

RESUMEN

PURPOSE: To appraise the performances of an AI trained to detect and localize skeletal lesions and compare them to the routine radiological interpretation. METHODS: We retrospectively collected all radiographic examinations with the associated radiologists' reports performed after a traumatic injury of the limbs and pelvis during 3 consecutive months (January to March 2017) in a private imaging group of 14 centers. Each examination was analyzed by an AI (BoneView, Gleamer) and its results were compared to those of the radiologists' reports. In case of discrepancy, the examination was reviewed by a senior skeletal radiologist to settle on the presence of fractures, dislocations, elbow effusions, and focal bone lesions (FBL). The lesion-wise sensitivity of the AI and the radiologists' reports was compared for each lesion type. This study received IRB approval (CRM-2106-177). RESULTS: A total of 4774 exams were included in the study. Lesion-wise sensitivity was 73.7% for the radiologists' reports vs. 98.1% for the AI (+24.4 points) for fracture detection, 63.3% vs. 89.9% (+26.6 points) for dislocation detection, 84.7% vs. 91.5% (+6.8 points) for elbow effusion detection, and 16.1% vs. 98.1% (+82 points) for FBL detection. The specificity of the radiologists' reports was always 100% whereas AI specificity was 88%, 99.1%, 99.8%, 95.6% for fractures, dislocations, elbow effusions, and FBL respectively. The NPV was measured at 99.5% for fractures, 99.8% for dislocations, and 99.9% for elbow effusions and FBL. CONCLUSION: AI has the potential to prevent diagnosis errors by detecting lesions that were initially missed in the radiologists' reports.


Asunto(s)
Aprendizaje Profundo , Fractura-Luxación , Fracturas Óseas , Luxaciones Articulares , Algoritmos , Codo , Fracturas Óseas/diagnóstico por imagen , Humanos , Radiólogos , Estudios Retrospectivos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA