Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(25): 9973-9984, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31092553

RESUMEN

A pathological feature of Parkinson's disease (PD) is Lewy bodies (LBs) composed of α-synuclein (α-syn) amyloid fibrils. α-Syn is a 140 amino acids-long protein, but truncated α-syn is enriched in LBs. The proteolytic processes that generate these truncations are not well-understood. On the basis of our previous work, we propose that these truncations could originate from lysosomal activity attributable to cysteine cathepsins (Cts). Here, using a transgenic SNCAA53T mouse model, overexpressing the PD-associated α-syn variant A53T, we compared levels of α-syn species in purified brain lysosomes from nonsymptomatic mice with those in age-matched symptomatic mice. In the symptomatic mice, antibody epitope mapping revealed enrichment of C-terminal truncations, resulting from CtsB, CtsL, and asparagine endopeptidase. We did not observe changes in individual cathepsin activities, suggesting that the increased levels of C-terminal α-syn truncations are because of the burden of aggregated α-syn. Using LC-MS and purified α-syn, we identified C-terminal truncations corresponding to amino acids 1-122 and 1-90 from the SNCAA53T lysosomes. Feeding rat dopaminergic N27 cells with exogenous α-syn fibrils confirmed that these fragments originate from incomplete fibril degradation in lysosomes. We mimicked these events in situ by asparagine endopeptidase degradation of α-syn fibrils. Importantly, the resulting C-terminally truncated fibrils acted as superior seeds in stimulating α-syn aggregation compared with that of the full-length fibrils. These results unequivocally show that C-terminal α-syn truncations in LBs are linked to Cts activities, promote amyloid formation, and contribute to PD pathogenesis.


Asunto(s)
Amiloide/química , Catepsina B/metabolismo , Catepsina L/metabolismo , Cisteína/química , Mutación , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , alfa-Sinucleína/genética
2.
Biochem Biophys Res Commun ; 529(4): 1106-1111, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819572

RESUMEN

The intracellular accumulation of α-synuclein (α-syn) amyloid fibrils is a hallmark of Parkinson's disease. Because lysosomes are responsible for degrading aggregated species, enhancing lysosomal function could alleviate the overburden of α-syn. Previously, we showed that cysteine cathepsins (Cts) is the main class of lysosomal proteases that degrade α-syn, and in particular, CtsL was found to be capable of digesting α-syn fibrils. Here, we report that CtsK is a more potent protease for degrading α-syn amyloids. Using peptide mapping by liquid chromatography with mass spectrometry, critical cleavage sites involved in destabilizing fibril structure are identified. CtsK is only able to devour the internal regions after the removal of both N- and C-termini, indicating their protective role of the amyloid core from proteolytic attack. Our results suggest that if overexpressed in lysosomes, CtsK has the potential to ameliorate α-syn pathology.


Asunto(s)
Catepsina K/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Acetilación , Amiloide/metabolismo , Amiloide/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Mapeo Peptídico , Proteolisis , Solubilidad
3.
Chembiochem ; 21(11): 1582-1586, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31960993

RESUMEN

Conformational changes in α-synuclein (α-syn) are central to its biological function and Parkinson's disease pathology. Here, terminal alkynes (homopropargylglycine) were employed as environmentally sensitive Raman probes at residues 1, 5, 116, and 127 to characterize soluble (disordered), micelle-bound (α-helical), and fibrillar (ß-sheet) α-syn. Along with the full-length protein, a disease-related C-terminal truncation (1-115) was also studied. For the first time, ß-sheet α-syn amyloid structure was detected by the amide-I band in N27 dopaminergic rat cells, where a reciprocal relationship between levels of fibrils and lipids was seen. Site-specific spectral features of the terminal alkynes also revealed the heterogeneity of the cellular environment. This work shows the versatility of Raman microspectroscopy and the power of unnatural amino acids in providing structural and residue-level insights in solution and in cells.


Asunto(s)
Alquinos/química , Amiloide/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Glicina/análogos & derivados , Sondas Moleculares/química , Eliminación de Secuencia , alfa-Sinucleína/química , Alquinos/metabolismo , Animales , Línea Celular , Clonación Molecular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Micelas , Sondas Moleculares/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría Raman/métodos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853840

RESUMEN

Cardiomyocytes require the HSP70 chaperone BiP to maintain proteostasis in the endoplasmic reticulum (ER) following cardiac stress. The adenylyl transferase (AMPylase) FICD is increasingly recognized to regulate BiP activity through the post-translational addition of an adenosine monophosphate moiety to BiP surface residues. However, the physiological impact of FICD-mediated BiP regulation in the context of cardiovascular health is unknown. Here, we find that FICD deficiency prevents pressure overload-associated heart failure, hypertrophy, and fibrosis, and that FICD knockout mice maintain normal cardiac function after cardiac pressure overload. At a cellular level, we observe that FICD-mediated BiP AMPylation blunts the induction of the unfolded protein response (UPR ER ) and impairs BiP interaction with FAM134B, an ER-phagy receptor, thus limiting ER-phagy induction under stress. In contrast, FICD loss significantly increases BiP-dependent UPR ER induction and ER-phagy in stressed cardiomyocytes. We also uncover cell type-specific consequences of FICD activity in response to ER stress, positioning FICD as a critical proteostasis regulator in cardiac tissue. Our results highlight a novel regulatory paradigm controlling stress resilience in cardiomyocytes and offer a rationale to consider FICD as a therapeutic target to treat cardiac hypertrophy.

5.
Mol Cancer Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018356

RESUMEN

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's (BE) progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL - gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and, stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for Hsp40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain, or a cell permeable peptide (Pep-J) encoding the above 10 amino acids, can bind and inhibit DNAJ-Hsp70 co-chaperone activity thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic BE and EAC cells and inhibit growth of patient-derived dysplastic BE organoids (PDOs) in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J is comparable to simvastatin, a cholesterol lowering drug, that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase independent, chaperone regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA