RESUMEN
MOTIVATION: Because of its low cost, amplicon sequencing, also known as ultra-deep targeted sequencing, is now becoming widely used in oncology for detection of actionable mutations, i.e. mutations influencing cell sensitivity to targeted therapies. Amplicon sequencing is based on the polymerase chain reaction amplification of the regions of interest, a process that considerably distorts the information on copy numbers initially present in the tumor DNA. Therefore, additional experiments such as single nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) arrays often complement amplicon sequencing in clinics to identify copy number status of genes whose amplification or deletion has direct consequences on the efficacy of a particular cancer treatment. So far, there has been no proven method to extract the information on gene copy number aberrations based solely on amplicon sequencing. RESULTS: Here we present ONCOCNV, a method that includes a multifactor normalization and annotation technique enabling the detection of large copy number changes from amplicon sequencing data. We validated our approach on high and low amplicon density datasets and demonstrated that ONCOCNV can achieve a precision comparable with that of array CGH techniques in detecting copy number aberrations. Thus, ONCOCNV applied on amplicon sequencing data would make the use of additional array CGH or SNP array experiments unnecessary.
Asunto(s)
Dosificación de Gen , Genes Relacionados con las Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Hibridación Genómica Comparativa , ADN de Neoplasias/química , Exoma , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Tumor molecular screening allows categorization of molecular alterations to select the best therapeutic strategy. AT-rich interactive domain-containing 1A (ARID1A) gene mutations are present in gastric, endometrial, and clear cell ovarian tumors. Inactivation of this gene impairs mismatch repair (MMR) machinery leading to an increased mutation burden that correlates with microsatellite instability (MSI), associated with tumor-infiltrating lymphocytes and programmed death ligand 1 (PD-L1) expression. This is the first case report in lung adenocarcinoma of ARID1A gene alterations leading to sporadic MSI, through somatic mutL homolog 1 (MLH1) promoter methylation, with an MLH1 gene mutation as the second somatic hit. CASE PRESENTATION: A 50-year-old never-smoker Bulgarian woman, with no comorbidities and no family history of cancer, was diagnosed with metastatic lung adenocarcinoma. PD-L1 immunohistochemistry (IHC) of tissue biopsies on right groin adenopathies resulted in 30% positivity. Liquid biopsy test reported actionable alterations in ARID1A gene, rearranged during transfection (RET) gene fusions, epidermal growth factor receptor (EGFR) gene R776H mutation, breast cancer (BRCA) genes 1/2, and cyclin-dependent kinase inhibitor 2A (CDKN2A) gene mutations. The patient was treated with immunotherapy, and showed a treatment response lasting for 19 months until a new metastasis appeared at the right deltoid muscle. Genomic analysis of a sample of this metastasis confirmed PD-L1 positivity of greater than 50% with CD8+ T cells expression and showed MSI with a deleterious c.298C>T (p.R100*) MLH1 gene mutation. Multiplex ligation-dependent probe amplification (MLPA) of this sample unveiled MLH1 gene promoter methylation. The MLH1 gene mutation and the MLH1 gene methylation were not present at the germline setting. CONCLUSIONS: In this particular case, we show that ARID1A gene mutations with sporadic MSI due to somatic MLH1 gene promoter methylation and MLH1 gene mutation could change the prognosis and define the response to immunotherapy in a patient with lung adenocarcinoma. Comprehensive solid and liquid biopsy tests are useful to find out resistance mechanisms to immune checkpoint inhibitors. Our data encourages the development of new therapies against ARID1A mutations and epigenomic methylation when involved in MSI neoplasms.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ADN , Femenino , Genómica , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Metilación , Inestabilidad de Microsatélites , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Mutación , Factores de TranscripciónRESUMEN
Biomarkers to identify patients without benefit from adding everolimus to endocrine treatment in metastatic breast cancer (MBC) are needed. We report the results of the Pearl trial conducted in five Belgian centers assessing 18F-FDG-PET/CT non-response (n = 45) and ctDNA detection (n = 46) after 14 days of exemestane-everolimus (EXE-EVE) to identify MBC patients who will not benefit. The metabolic non-response rate was 66.6%. Median PFS in non-responding patients (using as cut-off 25% for SUVmax decrease) was 3.1 months compared to 6.0 months in those showing response (HR: 0.77, 95% CI: 0.40-1.50, p = 0.44). The difference was significant when using a "post-hoc" cut-off of 15% (PFS 2.2 months vs 6.4 months). ctDNA detection at D14 was associated with PFS: 2.1 months vs 5.0 months (HR-2.5, 95% CI: 1.3-5.0, p = 0.012). Detection of ctDNA and/or the absence of 18F-FDG-PET/CT response after 14 days of EXE-EVE identifies patients with a low probability of benefiting from treatment. Independent validation is needed.
RESUMEN
Following congenital human CMV (HCMV) infection, 15-20% of infected newborns develop severe health problems whereas infection in immunocompetent adults rarely causes illness. The immaturity of neonatal antigen presenting cells could play a pivotal role in this susceptibility. Neonatal myeloid DC were shown to be deficient in IFN-beta and IL-12 synthesis in response to TLR triggering. We studied the response of cord and adult blood-derived myeloid DC to HCMV infection. Neonatal and adult DC were equally susceptible to in vitro HCMV infection. Among immunomodulatory cytokines, IL-12, IFN-beta and IFN-lambda1 were produced at lower levels by neonatal as compared with adult DC. In contrast, neonatal and adult DC produced similar levels of IFN-alpha and IFN-inducible genes. Microarray analysis indicated that among the more than thousand genes up- or down-regulated by HCMV infection of myeloid DC, 88 were differently regulated between adult and neonatal DC. We conclude that neonatal and adult DC trigger a partly different response to HCMV infection. The deficient IL-12 and mature IFN-alpha production by neonatal DC exposed to HCMV are likely to influence the quality of the T lymphocyte response to HCMV infection in early life.
Asunto(s)
Citomegalovirus/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Interferón Tipo I/inmunología , Interleucina-12/inmunología , Adulto , Quimiocina CXCL9/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Citomegalovirus/metabolismo , Células Dendríticas/metabolismo , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Antígenos HLA/metabolismo , Humanos , Recién Nacido , Interferón Tipo I/genética , Interferón-alfa/genética , Interferón-alfa/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Interferones/genética , Interferones/metabolismo , Interleucina-12/genética , Subunidad p35 de la Interleucina-12/genética , Subunidad p35 de la Interleucina-12/metabolismo , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/metabolismo , Interleucinas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología , Proteínas Virales/metabolismoRESUMEN
INTRODUCTION: The identification of tumour mutational burden (TMB) as a biomarker of response to programmed cell death protein 1 (PD-1) immunotherapy has necessitated the development of genomic assays to measure this. We carried out comprehensive molecular profiling of cancers using the Illumina TruSight Oncology 500 (TSO500) panel and compared these to whole-genome sequencing (WGS). METHODS: Cancer samples derived from formalin-fixed material were profiled on the TSO500 panel, sequenced on an Illumina NextSeq 500 instrument and processed through the TSO500 Docker pipeline. Either FASTQ files (PierianDx) or vcf files (OncoKDM) were processed to understand clinical actionability. RESULTS: In total, 108 samples (a mixture of colorectal, lung, oesophageal and control samples) were processed via the DNA panel. There was good correlation between TMB, single-nucleotide variants (SNVs), indels and copy-number variations as predicted by TSO500 and WGS (R2 > 0.9) and good reproducibility, with less than 5% variability between repeated controls. For the RNA panel, 13 samples were processed, with all known fusions observed via orthogonal techniques. For clinical actionability, 72 tier 1 variants and 297 tier 2 variants were detected, with clinical trials identified for all patients. CONCLUSIONS: The TSO500 assay accurately measures TMB, microsatellite instability, SNVs, indels, copy-number/structural variation and gene fusions when compared to WGS and orthogonal technologies. Coupled with a clinical annotation pipeline, this provides a powerful methodology for identification of clinically actionable variants.
Asunto(s)
Biomarcadores de Tumor , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Niño , Preescolar , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Lactante , Masculino , Inestabilidad de Microsatélites , Neoplasias/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Secuenciación Completa del GenomaRESUMEN
This article was originally published under a [CC BY NC 4.0] license.
RESUMEN
BACKGROUND: We describe in a patient with breast cancer the change in c-MET expression during everolimus treatment, opening a better understanding of the resistance to everolimus and a role for cabozantinib. OBJECTIVE: The objective of this study was to evaluate c-MET as a potential predictive biomarker for everolimus efficacy in breast cancer. METHODS: We first selected a patient with breast cancer with a long-lasting response to everolimus and retrospectively profiled biopsies that were taken before everolimus initiation (Biopsy 1) and at progression on everolimus (Biopsy 2) using amplicon sequencing and immunohistochemistry. We then retrospectively evaluated c-MET expression in a cohort of patients with breast cancer treated with everolimus. RESULTS: While not expressed in Biopsy 1, c-MET was highly expressed in Biopsy 2, suggesting a role for c-MET in breast cancer progression. Cabozantinib resulted in a rapid radiological response in this patient. Twenty-nine patients were included (12 c-MET-positive and 17 c-MET-negative patients) in the second part of the study. Baseline c-MET expression was associated with higher tumor grade, higher frequency of visceral metastases, and lower endocrine sensitivity. The c-MET-positive patients presented with a shorter progression-free survival (6.1 vs 10.5 months, respectively; p = 0.002) and a lower response rate (0% vs 12%) to everolimus, compared with c-MET-negative patients. CONCLUSIONS: c-MET could play a role in the resistance to everolimus and its inhibition should be evaluated in breast cancer.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Everolimus/uso terapéutico , Proteínas Proto-Oncogénicas c-met/metabolismo , Anciano , Neoplasias de la Mama/mortalidad , Estudios de Cohortes , Everolimus/farmacología , Femenino , Humanos , Estudios Retrospectivos , Análisis de SupervivenciaRESUMEN
It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.
Asunto(s)
Fertilidad/genética , Desarrollo Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , alfa-Fetoproteínas/metabolismo , Androstatrienos/farmacología , Animales , Inhibidores de la Aromatasa/farmacología , Encéfalo/embriología , Estrógenos/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/fisiología , Infertilidad Femenina/tratamiento farmacológico , Infertilidad Femenina/genética , Ratones , Ratones Noqueados , Hipófisis/fisiología , Embarazo , Precursores de Proteínas/genética , alfa-Fetoproteínas/genéticaRESUMEN
The introduction of druggable targets has significantly improved the outcomes of non-small cell lung cancer patients (NSCLC). EML4-ALK translocation represents 4-6% of the druggable alterations in NSCLC. With the approval of Crizotinib, first discovered drug for the EML4-ALK translocation, on first line treatment for patients with detected mutation meant a complete change on the treatment landscape. The current standard method for EML4-ALK identification is immunohistochemistry or FISH in a tumor biopsy. However, a big number of NSCLC patients have not tissue available for analysis and others are not suitable for biopsy due to their physical condition or the location of the tumor. Liquid biopsy seems the best alternative for identification in these patients that have no tissue available. Circulating free RNA has not been validated for the identification of this mutation. As a complementary tool, exosomes might represent a good tool for predictive biomarkers study, and due to their stability, they preserve the genetic material contained in them. Our group has described for the first time the translocation EML4-ALK in RNA isolated from exosomes derived from NSCLC patients using next generation sequencing.
RESUMEN
Predictive biomarkers are eagerly awaited in advanced colorectal cancer (aCRC). Targeted sequencing performed on tumor and baseline plasma samples in 20 patients with aCRC treated with regorafenib identified 89 tumor-specific mutations of which ≥50% are also present in baseline plasma. Droplet digital PCR (ddPCR) assays were optimized to monitor circulating tumor DNA (ctDNA) levels in plasmatic samples collected throughout the treatment course and showed the importance of using the absolute value for ctDNA rather than the mutant/wild type ratio in monitoring the therapy outcome. High baseline cell free DNA (cfDNA) levels are associated with shorter overall survival (OS) (HR 7.38, P=0.001). An early increase (D14) in mutated copies/mL is associated with a significantly worse PFS (HR 6.12, P=0.008) and OS (HR 8.02, P=0.004). These data suggest a high prognostic value for early ctDNA level changes and support the use of blood-born genomic markers as a tool for treatment.
RESUMEN
Molecular profiling and functional assessment of signalling pathways of advanced solid tumours are becoming increasingly available. However, their clinical utility in guiding patients' treatment remains unknown. Here, we assessed whether molecular profiling helps physicians in therapeutic decision making by analysing the molecular profiles of 1057 advanced cancer patient samples after failing at least one standard of care treatment using a combination of next-generation sequencing (NGS), immunohistochemistry (IHC) and other specific tests. The resulting information was interpreted and personalized treatments for each patient were suggested. Our data showed that NGS alone provided the oncologist with useful information in 10-50% of cases (depending on cancer type), whereas the addition of IHC/other tests increased extensively the usefulness of the information provided. Using internet surveys, we investigated how therapy recommendations influenced treatment choice of the oncologist. For patients who were still alive after the provision of the molecular information (76.8%), 60.4% of their oncologists followed report recommendations. Most treatment decisions (93.4%) were made based on the combination of NGS and IHC/other tests, and an approved drug- rather than clinical trial enrolment- was the main treatment choice. Most common reasons given by physicians to explain the non-adherence to recommendations were drug availability and cost, which remain barriers to personalised precision medicine. Finally, we observed that 27% of patients treated with the suggested therapies had an overall survival > 12 months. Our study demonstrates that the combination of NGS and IHC/other tests provides the most useful information in aiding treatment decisions by oncologists in routine clinical practice.
RESUMEN
BACKGROUND: Preclinical and clinical studies have shown that the proteasome inhibitor bortezomib (PS341, Velcade) is highly effective when combined with chemotherapeutic agents. The value of trastuzumab (Herceptin) in HER-2-positive (3+ score by immunohistochemistry or fluorescence in situ hybridization positive) breast cancer is also known; however, the response rate is <40% for metastatic breast cancer. These two pharmacologic agents prevent nuclear factor-kappaB (NF-kappaB) activation and induce nuclear accumulation of the cyclin-dependent kinase inhibitor p27(kip1), suggesting that combining bortezomib with trastuzumab could increase trastuzumab efficacy. METHODS: Drug cytotoxicity, both individually and together, and drug effects on p27 localization and NF-kappaB activation were investigated on four breast cancer cell lines: SKBR-3 (HER-2+++), MDA-MB-453 (HER-2++), HER-2-transfected MCF-7 (HER-2+++), and MCF-7 (HER-2-). RESULTS: Bortezomib induced apoptosis in HER-2-positive and HER-2-negative breast cancer cells in a dose- and time-dependent manner. Together, these drugs induced apoptosis of HER-2++/+++ cells at low concentrations, which had no effect when used alone, indicating there was a synergistic effect. Sequential treatment (trastuzumab then bortezomib) induced either necrosis or apoptosis, depending on the trastuzumab preincubation time. Susceptibility to bortezomib alone and the drug combination correlated with NF-kappaB activity and p27 localization. CONCLUSIONS: The addition of bortezomib to trastuzumab increases the effect of trastuzumab in HER-2+++/++ cell lines in a synergistic way. This effect likely results from the ability of these two drugs to target the NF-kappaB and p27 pathways. The potential clinical application of this drug combination is under current evaluation by our group in a phase 1 clinical trial.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ácidos Borónicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Pirazinas/farmacología , Receptor ErbB-2/biosíntesis , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Apoptosis/efectos de los fármacos , Ácidos Borónicos/administración & dosificación , Bortezomib , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , FN-kappa B/biosíntesis , FN-kappa B/metabolismo , Pirazinas/administración & dosificación , TrastuzumabRESUMEN
The mechanistic target of the rapamycin (mTOR) pathway is frequently activated in human cancers. Our objective was to evaluate relationships between mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN in solid-tumor biopsies from a broad selection of cancer types. Formalin-fixed paraffin-embedded (FFPE) tumor samples were analyzed by immunohistochemistry (IHC) and next-generation sequencing (NGS). TOR-pathway activation was identified by expression (by IHC) of the downstream effector p-4E-BP1. Activating PIK3CA mutations and null PTEN mutations were identified by NGS, and for PTEN, confirmed by IHC. Overall, mTOR-pathway activation was identified in 444/538 (83%) samples representing 40 different cancer types. Functional mutations in either or both PIK3CA and PTEN genes were identified in 173/538 (32%) samples. PIK3CA mutations were identified in 60/538 (11%) samples, PTEN mutations were identified in 155/538 (29%) samples and mutations in both PIK3CA and PTEN were identified in 18/538 (3%) samples. Overall, mTOR-pathway activation was not significantly associated with the PIK3CA and PTEN genotypes. However, all 18 samples with both PIK3CA and PTEN mutations also displayed mTOR-pathway activation (χ2p=0.0471). Also, out of a total of 95 breast cancer samples, there were 5 breast-cancer samples which did not have mTOR-pathway activation, and all 5 (100%) of these had PIK3CA and PTEN mutations compared to 51/90 (57%) in the breast-cancer samples with mTOR-pathway activation (χ2p=0.0134). Finally, the percentages of PIK3CA mutations were higher in colorectal-cancer samples which had mTOR-pathway activation (9/27, 33%) than in colorectal-cancer samples without mTOR-pathway activation (6/44; 14%; χ2 p=0.0484). Therefore, tumor-biopsy analyses based on combined mTOR-pathway biomarkers (and combined NGS and IHC assessments) could potentially provide treatment-informative stratification for particular cancer types.
RESUMEN
We present a muscle-invasive high-grade metastatic urothelial carcinoma patient, aged 71 years, with rapid progression from the diagnosis and a poor prognosis after 3 lines of treatment. A clinical exhaustive genomic profile was performed with the goal of finding potential actionable molecular alterations. The patient showed significant symptomatic and laboratory improvement with a nonstandard chemotherapy combination treatment identified by the molecular profiling, which would otherwise not have been considered. This approach illustrates the clinical benefit of a comprehensive genomic analysis in an aggressive and refractory urothelial carcinoma.
RESUMEN
Several studies have demonstrated the feasibility of molecular screening of tumour samples for matching patients with cancer to targeted therapies. However, most of them have been carried out at institutional or national level. Herein, we report on the pilot phase of AURORA (NCT02102165), a European multinational collaborative molecular screening initiative for advanced breast cancer patients. Forty-one patients were prospectively enroled at four participating centres across Europe. Metastatic tumours were biopsied and profiled using an Ion Torrent sequencing platform at a central facility. Sequencing results were obtained for 63% of the patients in real-time with variable turnaround time stemming from delays between patient consent and biopsy. At least one clinically actionable mutation was identified in 73% of patients. We used the Illumina sequencing technology for orthogonal validation and achieved an average of 66% concordance of substitution calls per patient. Additionally, copy number aberrations inferred from the Ion Torrent sequencing were compared to single nucleotide polymorphism arrays and found to be 59% concordant on average. Although this study demonstrates that powerful next generation genomic techniques are logistically ready for international molecular screening programs in routine clinical settings, technical challenges remain to be addressed in order to ensure the accuracy and clinical utility of the genomic data.
RESUMEN
We previously mapped several quantitative trait loci (QTLs) controlling DMBA-induced mammary tumor development in female rats derived from a SPRD-Cu3 (susceptible strain) x WKY (resistant strain) cross. Two of these QTLs were assigned to chromosomes 5 and 18. In the present study, we generated and characterized congenic strains in which a segment of WKY chromosomes 5 or 18 was introduced in the SPRD-Cu3 genetic background, thereby physically demonstrating that each of these two chromosomes controls mammary tumor multiplicity. The chromosome 5 QTL (Mcstm1) accounts for 7 tumors per animal (versus a total of 11 tumors per SPRD-Cu3 rat). The chromosome 18 QTL (Mcstm2) accounts for 3 tumors per animal and is the first chemically-induced mammary cancer susceptibility locus assigned to this chromosome. In addition, the Mcstm1 region was shown to also controls tumor latency. These loci thus play a major role in chemically-induced mammary tumor development. QTLs controlling chemically-induced or estrogen-induced mammary tumor development have independently been identified on chromosomes 5 and 18, using susceptible strains others than SPRD-Cu3. Therefore the haplotype structure of the relevant chromosome regions was analyzed in the different strains. Some chromosome regions were found to be highly mosaic (haplotype blocks < 1 Mb), while one region showed an apparently conserved haplotype block of 7.5 Mb. This analysis points to limited regions that could harbor the causative genes and also indicates that at least Mcstm2 is a novel QTL.
Asunto(s)
Mapeo Cromosómico , Cromosomas/genética , Predisposición Genética a la Enfermedad , Neoplasias Mamarias Experimentales/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Animales Congénicos , Carcinógenos/toxicidad , Cruzamientos Genéticos , Femenino , Genotipo , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Ratas , Ratas Endogámicas WKY , Ratas Sprague-DawleyRESUMEN
OBJECTIVE: We investigated a large consanguineous Moroccan family with progressive myoclonic epilepsy (PME) consistent with autosomal recessive inheritance, to describe the phenotype and identify the causal gene. METHODS: We recorded the clinical course of the disease and the response to drug therapy, whereas carefully excluding known causes of progressive myoclonic epilepsy. We then linked the disease by homozygosity mapping using microsatellite markers and single nucleotide polymorphism microarrays (11K GeneChip), and studied candidate genes in the critical linkage region. RESULTS: Epilepsy started between 16 and 24 months of age after normal initial development. Seizures were multifocal myoclonus aggravated by movements, and generalized tonic-clonic seizures were experienced by two patients. Electroencephalogram showed slow dysrhythmia, multifocal and occasionally generalized epileptiform discharges, and photosensitivity. Brain magnetic resonance images were normal. All patients were demented. Two had refractory epilepsy and a severe course. Seizures were controlled in the third patient, whose disease course was less severe. Linkage analyses identified a new locus on 7q11.2, with a maximum multipoint logarithm of odds of 4.0 at D7S663. In the critical linkage region, we found a C to T mutation in exon 2 of the potassium channel tetramerization domain containing 7 gene (KCTD7). The mutation affected a highly conserved segment of the predicted protein, changing an arginine codon into a stop codon (R99X). INTERPRETATION: Neurodegeneration in progressive myoclonic epilepsy presented by our patients paralleled the refractoriness of epilepsy. The disease was transmitted as an autosomal recessive trait linked to a novel locus at 7q11.2, where we identified a mutation in KCTD7.
Asunto(s)
Epilepsias Mioclónicas/genética , Mutación/genética , Canales de Potasio/genética , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Progresión de la Enfermedad , Epilepsias Mioclónicas/diagnóstico , Femenino , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Marruecos , Linaje , Homología de Secuencia de AminoácidoRESUMEN
The synthesis of interferon-beta (IFNbeta) and IFN-inducible factors elicited by lipopolysaccharide (LPS) depends on the transcriptional activity of interferon regulatory factor 3 (IRF-3) downstream of Toll-like receptor-4 (TLR4). To examine the ability of human newborns to mount TLR4-mediated IRF-3-dependent responses, we analyzed the pattern of genes expressed on the addition of LPS to cord blood or cord blood monocyte-derived dendritic cells (moDCs). Expression of IFNbeta and IFN-inducible genes was selectively impaired in neonatal blood and moDCs as compared with their adult counterparts. This selective defect was confirmed by microarray experiments on moDCs. Altered expression of IFN-inducible genes was related to impaired IFNbeta synthesis because IFNbeta signaling was functional in neonatal moDCs. However, addition of exogenous IFNbeta failed to restore LPS-induced IL-12p70 synthesis which was previously shown to be defective in neonatal moDCs. Although LPS-induced IRF-3 nuclear translocation was observed both in adult and neonatal moDCs, IRF-3 DNA-binding activity and association with the coactivator CREB-binding protein (CBP) were decreased in neonatal as compared with adult moDCs. We conclude that impaired IRF-3/CBP interaction in neonatal blood cells exposed to LPS is associated with impaired expression of IFNbeta and IFN-inducible genes. Because IRF-3 activity is also required for IL-12p70 synthesis, our findings provide a molecular basis for the decreased ability of LPS-stimulated neonatal moDCs to elicit Th1-type responses.
Asunto(s)
Sangre Fetal/efectos de los fármacos , Sangre Fetal/metabolismo , Factor 3 Regulador del Interferón/sangre , Lipopolisacáridos/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adulto , Proteína de Unión a CREB/sangre , Sangre Fetal/citología , Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Recién Nacido , Interferón beta/sangre , Interferón beta/genética , ARN Mensajero/sangre , ARN Mensajero/genéticaRESUMEN
The rat is considered an excellent model for studying human breast cancer. Therefore, understanding the genetic basis of susceptibility to mammary cancer in this species is of great interest. Previous studies based on crosses involving the susceptible strain WF (crossed with the resistant strains COP or WKY) and focusing on tumor multiplicity as the susceptibility phenotype led to the identification of several loci that control chemically induced mammary cancer. The present study was aimed to determine whether other loci can be identified by analyzing crosses derived from another susceptible strain on the one hand, and by including phenotypes other than tumor multiplicity on the other hand. A backcross was generated between the susceptible SPRD-Cu3 strain and the resistant WKY strain. Female progeny were genotyped with microsatellite markers covering all rat autosomes, treated with a single dose of DMBA, and phenotyped with respect to tumor latency, tumor multiplicity, and tumor aggressiveness. Seven loci controlling mammary tumor development were detected. Different loci control tumor multiplicity, latency, and aggressiveness. While some of these loci colocalize with loci identified in crosses involving the susceptible strain WF, new loci have been uncovered, indicating that the use of distinct susceptible and resistant strain pairs will help in establishing a comprehensive inventory of mammary cancer susceptibility loci.