Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(27): 18576-18585, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935606

RESUMEN

Mixed-cation and mixed-halide lead halide perovskites show great potential for their application in photovoltaics. Many of the high-performance compositions are made of cesium, formamidinium, lead, iodine, and bromine. However, incorporating bromine in iodine-rich compositions and its effects on the thermal stability of the perovskite structure has not been thoroughly studied. In this work, we study how replacing iodine with bromine in the state-of-the-art Cs0.17FA0.83PbI3 perovskite composition leads to different dynamics in the phase transformations as a function of temperature. Through a combination of structural characterization, cathodoluminescence mapping, X-ray photoelectron spectroscopy, and first-principles calculations, we reveal that the incorporation of bromine reduces the thermodynamic phase stability of the films and shifts the products of phase transformations. Our results suggest that bromine-driven vacancy formation during high temperature exposure leads to irreversible transformations into PbI2, whereas materials with only iodine go through transformations into hexagonal polytypes, such as the 4H-FAPbI3 phase. This work sheds light on the structural impacts of adding bromine on thermodynamic phase stability and provides new insights into the importance of understanding the complexity of phase transformations and secondary phases in mixed-cation and mixed-halide systems.

2.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917967

RESUMEN

Mixed-cation metal halide perovskites have shown remarkable progress in photovoltaic applications with high power conversion efficiencies. However, to achieve large-scale deployment of this technology, efficiencies must be complemented by long-term durability. The latter is limited by external factors, such as exposure to humidity and air, which lead to the rapid degradation of the perovskite materials and devices. In this work, we study the mechanisms causing Cs and formamidinium (FA)-based halide perovskite phase transformations and stabilization during moisture and air exposure. We use in situ X-ray scattering, X-ray photoelectron spectroscopy, and first-principles calculations to study these chemical interactions and their effects on structure. We unravel a surface reaction pathway involving the dissolution of FAI by water and iodide oxidation by oxygen, driving the Cs/FA ratio into thermodynamically unstable regions, leading to undesirable phase transformations. This work demonstrates the interplay of bulk phase transformations with surface chemical reactions, providing a detailed understanding of the degradation mechanism and strategies for designing durable and efficient perovskite materials.

3.
Opt Express ; 30(15): 26027-26042, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236801

RESUMEN

As a coherent diffraction imaging technique, ptychography provides high-spatial resolution beyond Rayleigh's criterion of the focusing optics, but it is also sensitively affected by the decoherence coming from the spatial and temporal variations in the experiment. Here we show that high-speed ptychographic data acquisition with short exposure can effectively reduce the impact from experimental variations. To reach a cumulative dose required for a given resolution, we further demonstrate that a continuous multi-pass scan via high-speed ptychography can achieve high-resolution imaging. This low-dose scan strategy is shown to be more dose-efficient, and has potential for radiation-sensitive sample studies and time-resolved imaging.

4.
J Synchrotron Radiat ; 28(Pt 1): 309-317, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399582

RESUMEN

Ptychography is a rapidly developing scanning microscopy which is able to view the internal structures of samples at a high resolution beyond the illumination size. The achieved spatial resolution is theoretically dose-limited. A broadband source can provide much higher flux compared with a monochromatic source; however, it conflicts with the necessary coherence requirements of this coherent diffraction imaging technique. In this paper, a multi-wavelength reconstruction algorithm has been developed to deal with the broad bandwidth in ptychography. Compared with the latest development of mixed-state reconstruction approach, this multi-wavelength approach is more accurate in the physical model, and also considers the spot size variation as a function of energy due to the chromatic focusing optics. Therefore, this method has been proved in both simulation and experiment to significantly improve the reconstruction when the source bandwidth, illumination size and scan step size increase. It is worth mentioning that the accurate and detailed information of the energy spectrum for the incident beam is not required in advance for the proposed method. Further, we combine multi-wavelength and mixed-state approaches to jointly solve temporal and spatial partial coherence in ptychography so that it can handle various disadvantageous experimental effects. The significant relaxation in coherence requirements by our approaches allows the use of high-flux broadband X-ray sources for high-efficient and high-resolution ptychographic imaging.

5.
J Am Chem Soc ; 142(5): 2364-2374, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31917562

RESUMEN

Halide perovskites are a strong candidate for the next generation of photovoltaics. Chemical doping of halide perovskites is an established strategy to prepare the highest efficiency and most stable perovskite-based solar cells. In this study, we unveil the doping mechanism of halide perovskites using a series of alkaline earth metals. We find that low doping levels enable the incorporation of the dopant within the perovskite lattice, whereas high doping concentrations induce surface segregation. The threshold from low to high doping regime correlates to the size of the doping element. We show that the low doping regime results in a more n-type material, while the high doping regime induces a less n-type doping character. Our work provides a comprehensive picture of the unique doping mechanism of halide perovskites, which differs from classical semiconductors. We proved the effectiveness of the low doping regime for the first time, demonstrating highly efficient methylammonium lead iodide based solar cells in both n-i-p and p-i-n architectures.

6.
J Biol Inorg Chem ; 25(5): 759-776, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32583226

RESUMEN

The potential chemotherapeutic properties coupled to photochemical transitions make the family of fac-[Re(CO)3(N,N)X]0/+ (N,N = a bidentate diimine such as 2,2'-bipyridine (bpy); X = halide, H2O, pyridine derivatives, PR3, etc.) complexes of special interest. We have investigated reactions of the aqua complex fac-[Re(CO)3(bpy)(H2O)](CF3SO3) (1) with potential anticancer activity with the amino acid L-cysteine (H2Cys), and its derivative N-acetyl-L-cysteine (H2NAC), as well as the tripeptide glutathione (H3A), under physiological conditions (pH 7.4, 37 °C), to model the interaction of 1 with thiol-containing proteins and enzymes, and the impact of such coordination on its photophysical properties and cytotoxicity. We report the syntheses and characterization of fac-[Re(CO)3(bpy)(HCys)]·0.5H2O (2), Na(fac-[Re(CO)3(bpy)(NAC)]) (3), and Na(fac-[Re(CO)3(bpy)(HA)])·H2O (4) using extended X-ray absorption spectroscopy, IR and NMR spectroscopy, electrospray ionization spectrometry, as well as the crystal structure of {fac-[Re(CO)3(bpy)(HCys)]}4·9H2O (2 + 1.75 H2O). The emission spectrum of 1 displays a variance in Stokes shift upon coordination of L-cysteine and N-acetyl-L-cysteine. Laser excitation at λ = 355 nm of methanol solutions of 1-3 was followed by measuring their ability to produce singlet oxygen (1O2) using direct detection methods. The cytotoxicity of 1 and its cysteine-bound complex 2 was assessed using the MDA-MB-231 breast cancer cell line, showing that the replacement of the aqua ligand on 1 with L-cysteine significantly reduced the cytotoxicity of the Re(I) tricarbonyl complex. Probing the cellular localization of 1 and 2 using X-ray fluorescence microscopy revealed an accumulation of 1 in the nuclear and/or perinuclear region, whereas the accumulation of 2 was considerably reduced, potentially explaining its reduced cytotoxicity. Replacing the aqua ligand with cysteine in the antitumor active fac-[Re(CO)3(bpy)(H2O)](CF3SO3) complex significantly reduced its cellular accumulation and cytotoxicity against the MDA-MB-213 breast cancer cell line, shifted its maximum emission to considerably higher energies, and decreased its fluorescence quantum yield.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cisteína/farmacología , Renio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Monóxido de Carbono/análisis , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cisteína/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Conformación Molecular , Renio/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
Angew Chem Int Ed Engl ; 59(16): 6482-6491, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039530

RESUMEN

The mitochondrial calcium uniporter (MCU) is the ion channel that mediates Ca2+ uptake in mitochondria. Inhibitors of the MCU are valuable as potential therapeutic agents and tools to study mitochondrial Ca2+ . The best-known inhibitor of the MCU is the ruthenium compound Ru360. Although this compound is effective in permeabilized cells, it does not work in intact biological systems. We have recently reported the synthesis and characterization of Ru265, a complex that selectively inhibits the MCU in intact cells. Here, the physical and biological properties of Ru265 and Ru360 are described in detail. Using atomic absorption spectroscopy and X-ray fluorescence imaging, we show that Ru265 is transported by organic cation transporter 3 (OCT3) and taken up more effectively than Ru360. As an explanation for the poor cell uptake of Ru360, we show that Ru360 is deactivated by biological reductants. These data highlight how structural modifications in metal complexes can have profound effects on their biological activities.


Asunto(s)
Canales de Calcio/química , Calcio/metabolismo , Complejos de Coordinación/química , Mitocondrias/metabolismo , Rutenio/química , Canales de Calcio/metabolismo , Línea Celular , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , Humanos , Conformación Molecular , Oxidación-Reducción
8.
Anal Chem ; 91(2): 1460-1471, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30571081

RESUMEN

Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is the most common adult onset neurodegenerative disorder affecting motor neurons. Disruptions in metal ion homeostasis have been described in association with ALS, but the pathological mechanisms are still poorly understood. One of the familial ALS cases is caused by mutations in the metallo-enzyme copper-zinc superoxide dismutase (SOD1). In this study, we employed orthogonal cellular synchrotron radiation based spectro-microscopies to investigate the astrocytes of an ALS animal model: the rat hSOD1 G93A that overexpresses human mutated SOD1, which is known to increase the susceptibility of the SOD1 protein to form insoluble intracellular aggregates. Specifically, we applied soft X-ray transmission tomography and hard X-ray fluorescence microscopy in situ, Fourier transform infrared spectro-microscopy to detect and analyze aggregates, as well as to determine the alterations in the cellular ultrastructure and the elemental and the organic composition of ALS model astrocytes with respect to the control astrocytes isolated from nontransgenic littermates (NTg). The present study demonstrates that large aggregates in the form of multivesicular inclusions form exclusively in the ALS model astrocytes and not in the NTg counterpart. Furthermore, the number of mitochondria, the cellular copper concentration, and the amount of antiparallel ß-sheet structures were significantly changed within the cells of the ALS model as well as the lipid localization and composition. Also, our data indicate that choline was decreased in the ALS model astrocytes, which could explain their higher sensitivity to oxidative stress that we observed. These results show that the hG93A SOD1 mutation causes metabolic and ultrastructural cellular changes and point to a link between an increased copper concentration and aggregation: the most probable that the aggregation of G93A hSOD1 may perturb its binding to Cu, thus directly or indirectly affecting Cu homeostasis.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Astrocitos/patología , Microscopía/instrumentación , Mutación , Superóxido Dismutasa-1/genética , Sincrotrones , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Ratas
9.
J Synchrotron Radiat ; 26(Pt 4): 1302-1309, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274458

RESUMEN

Zinc K-edge X-ray absorption near-edge (XANES) spectroscopy was conducted on 40 zinc mineral samples and organic compounds. The K-edge position varied from 9660.5 to 9666.0 eV and a variety of distinctive peaks at higher post-edge energies were exhibited by the materials. Zinc is in the +2 oxidation state in all analyzed materials, thus the variations in edge position and post-edge features reflect changes in zinc coordination. For some minerals, multiple specimens from different localities as well as pure forms from chemical supply companies were examined. These specimens had nearly identical K-edge and post-edge peak positions with only minor variation in the intensity of the post-edge peaks. This suggests that typical compositional variations in natural materials do not strongly affect spectral characteristics. Organic zinc compounds also exhibited a range of edge positions and post-edge features; however, organic compounds with similar zinc coordination structures had nearly identical spectra. Zinc XANES spectral patterns will allow identification of unknown zinc-containing minerals and organic phases in future studies.

10.
Cell Mol Neurobiol ; 39(5): 619-636, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30874981

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.


Asunto(s)
Antioxidantes/farmacología , Cisplatino/efectos adversos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Mercaptoetilaminas/farmacología , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Azida Sódica/farmacología
11.
Environ Sci Technol ; 53(24): 14273-14284, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31751506

RESUMEN

Phenazine-1-carboxylic acid (PCA) is a broad-spectrum antibiotic produced by rhizobacteria in the dryland wheat fields of the Columbia Plateau. PCA and other phenazines reductively dissolve Fe and Mn oxyhydroxides in bacterial culture systems, but the impact of PCA upon Fe and Mn cycling in the rhizosphere is unknown. Here, concentrations of dithionite-extractable and poorly crystalline Fe were approximately 10% and 30-40% higher, respectively, in dryland and irrigated rhizospheres inoculated with the PCA-producing (PCA+) strain Pseudomonas synxantha 2-79 than in rhizospheres inoculated with a PCA-deficient mutant. However, rhizosphere concentrations of Fe(II) and Mn did not differ significantly, indicating that PCA-mediated redox transformations of Fe and Mn were transient or were masked by competing processes. Total Fe and Mn uptake into wheat biomass also did not differ significantly, but the PCA+ strain significantly altered Fe translocation into shoots. X-ray absorption near edge spectroscopy revealed an abundance of Fe-bearing oxyhydroxides and phyllosilicates in all rhizospheres. These results indicate that the PCA+ strain enhanced the reactivity and mobility of Fe derived from soil minerals without producing parallel changes in plant Fe uptake. This is the first report that directly links significant alterations of Fe-bearing minerals in the rhizosphere to a single bacterial trait.


Asunto(s)
Rizosfera , Triticum , Hierro , Minerales , Fenazinas , Microbiología del Suelo
12.
J Synchrotron Radiat ; 24(Pt 1): 288-295, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009569

RESUMEN

The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer-Lambert's law, formulae are presented in a general integral form and numerically applicable framework. The procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.

13.
J Microsc ; 265(1): 81-93, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580164

RESUMEN

Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.


Asunto(s)
Fibroblastos/química , Fibroblastos/citología , Microscopía Fluorescente/métodos , Espectrometría por Rayos X/métodos , Fijación del Tejido/métodos , Oligoelementos/análisis , Animales , Ratones , Células 3T3 NIH
14.
Analyst ; 142(2): 356-365, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27981320

RESUMEN

The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.


Asunto(s)
Glioblastoma/patología , Actinas/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/ultraestructura , Humanos , Metales Pesados/metabolismo , Microscopía , Espectrometría por Rayos X , Tomografía por Rayos X
15.
Inorg Chem ; 56(5): 2545-2555, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28198622

RESUMEN

Inorganic complexes are increasingly used for biological and medicinal applications, and the question of the cell penetration and distribution of metallodrugs is key to understanding their biological activity. Oxidative stress is known to be involved in inflammation and in inflammatory bowel diseases for which antioxidative defenses are weakened. We report here the study of the manganese complex Mn1 mimicking superoxide dismutase (SOD), a protein involved in cell protection against oxidative stress, using an approach in inorganic cellular chemistry combining the investigation of Mn1 intracellular speciation using mass spectrometry and of its quantification and distribution using electron paramagnetic resonance and spatially resolved X-ray fluorescence with evaluation of its biological activity. More precisely, we have looked for and found the MS signature of Mn1 in cell lysates and quantified the overall manganese content. Intestinal epithelial cells activated by bacterial lipopolysaccharide were taken as a cellular model of oxidative stress and inflammation. DNBS-induced colitis in mice was used to investigate Mn1 activity in vivo. Mn1 exerts an intracellular antiinflammatory activity, remains at least partially coordinated, with diffuse distribution over the whole cell, and functionally complements mitochondrial MnSOD.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Superóxido Dismutasa/metabolismo , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quimiocinas/antagonistas & inhibidores , Quimiocinas/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Dinitrofluorobenceno/análogos & derivados , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/química
16.
Vet Pathol ; 54(5): 828-831, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28651457

RESUMEN

Metallosis is the accumulation of metallic debris in soft tissues resulting from wear following total joint replacement. A dog was evaluated for lameness 4 years after total hip arthroplasty using a titanium alloy and cobalt chromium total hip system. Radiographs revealed severe acetabular component wear, implant-bone interface deterioration, and peri-acetabular osteolysis. During surgical revision, black periarticular tissue surrounded the implants. Histologically, there was fibrosis and granulomatous inflammation with abundant, intra- and extracellular, black, granular material and smaller amounts of clear punctate to acicular material. Laser capture microdissection followed by x-ray fluorescence microscopy indicated the material contained large amounts of titanium with smaller amounts of vanadium, cobalt, and chromium, confirming the diagnosis of metallosis. The clear material was birefringent under cross-polarized light, stained positive with Oil-Red-O, and thus was consistent with polyethylene. Metallosis exhibits characteristic gross and histologic lesions and is a differential diagnosis for aseptic loosening of hip implants.


Asunto(s)
Artroplastia de Reemplazo de Cadera/veterinaria , Prótesis de Cadera/efectos adversos , Metales/efectos adversos , Osteólisis/veterinaria , Complicaciones Posoperatorias/veterinaria , Animales , Artroplastia de Reemplazo de Cadera/efectos adversos , Artroplastia de Reemplazo de Cadera/instrumentación , Aleaciones de Cromo/efectos adversos , Diagnóstico Diferencial , Perros , Captura por Microdisección con Láser/veterinaria , Masculino , Osteólisis/etiología , Polietileno , Falla de Prótesis , Reoperación/veterinaria , Titanio/efectos adversos
17.
Environ Sci Technol ; 50(16): 8827-39, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27437565

RESUMEN

Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8-47 µg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5-3.2 × 10(-15) g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 µg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. This study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.


Asunto(s)
Cobre/química , Microalgas , Diatomeas , Sincrotrones , Rayos X
18.
Environ Sci Technol ; 50(13): 6912-20, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27286140

RESUMEN

Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.


Asunto(s)
Polvo , Hierro/química , Aerosoles , Solubilidad , Espectroscopía de Absorción de Rayos X
19.
Environ Sci Technol ; 50(19): 10343-10350, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-26824614

RESUMEN

Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.


Asunto(s)
Selenio/metabolismo , Sincrotrones , Biopelículas , Microscopía , Rayos X
20.
Angew Chem Int Ed Engl ; 55(5): 1742-5, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26696553

RESUMEN

Chromium(III) nutritional supplements are widely consumed for their purported antidiabetic activities. X-ray fluorescence microscopy (XFM) and X-ray absorption near-edge structure (XANES) studies have now shown that non-toxic doses of [Cr3 O(OCOEt)6 (OH2 )3 ](+) (A), a prospective antidiabetic drug that undergoes similar H2 O2 induced oxidation reactions in the blood as other Cr supplements, was also oxidized to carcinogenic Cr(VI) and Cr(V) in living cells. Single adipocytes treated with A had approximately 1 µm large Cr hotspots containing Cr(III) , Cr(V) , and Cr(VI) (primarily Cr(VI) thiolates) species. These results strongly support the hypothesis that the antidiabetic activity of Cr(III) and the carcinogenicity of Cr(VI) compounds arise from similar mechanisms involving highly reactive Cr(VI) and Cr(V) intermediates, and highlight concerns over the safety of Cr(III) nutritional supplements.


Asunto(s)
Adipocitos/metabolismo , Carcinógenos/síntesis química , Cromo/metabolismo , Suplementos Dietéticos , Carcinógenos/química , Microscopía Fluorescente , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA