Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Exp Immunol ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642547

RESUMEN

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

2.
Transfusion ; 62(7): 1347-1354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35588314

RESUMEN

BACKGROUND: The therapeutic benefit of convalescent plasma (CP) therapy to treat COVID-19 may derive from neutralizing antibodies (nAbs) to SARS-CoV-2. To investigate the effects of antigenic variation on neutralization potency of CP, we compared nAb titers against prototype and recently emerging strains of SARS-CoV-2, including Delta and Omicron, in CP donors previously infected with SARS-CoV-2 before and after immunization. METHODS AND MATERIALS: Samples were assayed from previously SARS-CoV-2 infected donors before (n = 17) and after one (n = 43) or two (n = 71) doses of Astra-Zeneca or Pfizer vaccinations. Ab titers against Wuhan/wild type (WT), Alpha, Beta, and Delta SARS-CoV-2 strains were determined by live virus microneutralization assay while titers to Omicron used a focus reduction neutralization test. Anti-spike antibody was assayed by Elecsys anti-SARS-CoV-2 quantitative spike assay (Roche). RESULTS: Unvaccinated donors showed a geometric mean titer (GMT) of 148 against WT, 80 against Alpha but mostly failed to neutralize Beta, Delta, and Omicron strains. Contrastingly, high GMTs were observed in vaccinated donors against all SARS-CoV-2 strains after one vaccine dose (WT:703; Alpha:692; Beta:187; Delta:215; Omicron:434). By ROC analysis, reactivity in the Roche quantitative Elecsys spike assay of 20,000 U/mL was highly predictive of donations with nAb titers of ≥1:640 against Delta (90% sensitivity; 97% specificity) and ≥1:320 against Omicron (89% sensitivity; 81% specificity). DISCUSSION: Vaccination of previously infected CP donors induced high levels of broadly neutralizing antibodies against circulating antigenic variants of SARS-CoV-2. High titer donations could be reliably identified by automated quantitative anti-spike antibody assay, enabling large-scale preselection of high-titer convalescent plasma.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Variación Antigénica , COVID-19/terapia , Humanos , Inmunización , Inmunización Pasiva , SARS-CoV-2 , Vacunación , Sueroterapia para COVID-19
3.
Gastroenterology ; 153(2): 566-578.e5, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28456632

RESUMEN

BACKGROUND & AIMS: Tumor necrosis factor (TNF) is an inflammatory cytokine expressed by human fetal liver cells (HFLCs) after infection with cell culture-derived hepatitis C virus (HCV). TNF has been reported to increase entry of HCV pseudoparticles into hepatoma cells and inhibit signaling by interferon alpha (IFNα), but have no effect on HCV-RNA replication. We investigated the effects of TNF on HCV infection of and spread among Huh-7 hepatoma cells and primary HFLCs. METHODS: Human hepatoma (Huh-7 and Huh-7.5) and primary HFLCs were incubated with TNF and/or recombinant IFNA2A, IFNB, IFNL1, and IFNL2 before or during HCV infection. We used 2 fully infectious HCV chimeric viruses of genotype 2A in these studies: J6/JFH (clone 2) and Jc1(p7-nsGluc2A) (Jc1G), which encodes a secreted luciferase reporter. We measured HCV replication, entry, spread, production, and release in hepatoma cells and HFLCs. RESULTS: TNF inhibited completion of the HCV infectious cycle in hepatoma cells and HFLCs in a dose-dependent and time-dependent manner. This inhibition required TNF binding to its receptor. Inhibition was independent of IFNα, IFNß, IFNL1, IFNL2, or Janus kinase signaling via signal transducer and activator of transcription. TNF reduced production of infectious viral particles by Huh-7 and HFLC, and thereby reduced the number of infected cells and focus size. TNF had little effect on HCV replicons and increased entry of HCV pseudoparticles. When cells were incubated with TNF before infection, the subsequent antiviral effects of IFNs were increased. CONCLUSIONS: In a cell culture system, we found TNF to have antiviral effects independently of, as well as in combination with, IFNs. TNF inhibits HCV infection despite increased HCV envelope glycoprotein-mediated infection of liver cells. These findings contradict those from other studies, which have reported that TNF blocks signal transduction in response to IFNs. The destructive inflammatory effects of TNF must be considered along with its antiviral effects.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Interferones/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Genotipo , Hepacivirus/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Quinasas Janus/metabolismo , Hígado/citología , Neoplasias Hepáticas/virología , Receptores del Factor de Necrosis Tumoral/metabolismo , Replicón/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/efectos de los fármacos
5.
J Virol ; 87(9): 5028-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23427151

RESUMEN

Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state.


Asunto(s)
Repetición de Anquirina , Virus de la Viruela de las Aves de Corral/inmunología , Viruela Aviar/inmunología , Interferón-alfa/inmunología , Enfermedades de las Aves de Corral/inmunología , Proteínas Virales/química , Proteínas Virales/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Embrión de Pollo , Pollos , Viruela Aviar/genética , Viruela Aviar/virología , Virus de la Viruela de las Aves de Corral/química , Virus de la Viruela de las Aves de Corral/genética , Biblioteca de Genes , Interferón-alfa/genética , Datos de Secuencia Molecular , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Estructura Terciaria de Proteína , Proteínas Virales/genética
6.
J Virol ; 87(9): 5041-52, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23427153

RESUMEN

Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012.


Asunto(s)
Repetición de Anquirina , Virus de la Viruela de las Aves de Corral/inmunología , Viruela Aviar/inmunología , Interferón beta/inmunología , Enfermedades de las Aves de Corral/inmunología , Proteínas Virales/química , Proteínas Virales/inmunología , Animales , Embrión de Pollo , Pollos , Viruela Aviar/genética , Viruela Aviar/virología , Virus de la Viruela de las Aves de Corral/química , Virus de la Viruela de las Aves de Corral/genética , Biblioteca de Genes , Interferón beta/genética , Mutación , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Estructura Terciaria de Proteína , Proteínas Virales/genética
7.
Open Biol ; 14(6): 230252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835241

RESUMEN

The Omicron strains of SARS-CoV-2 pose a significant challenge to the development of effective antibody-based treatments as immune evasion has compromised most available immune therapeutics. Therefore, in the 'arms race' with the virus, there is a continuing need to identify new biologics for the prevention or treatment of SARS-CoV-2 infections. Here, we report the isolation of nanobodies that bind to the Omicron BA.1 spike protein by screening nanobody phage display libraries previously generated from llamas immunized with either the Wuhan or Beta spike proteins. The structure and binding properties of three of these nanobodies (A8, H6 and B5-5) have been characterized in detail providing insight into their binding epitopes on the Omicron spike protein. Trimeric versions of H6 and B5-5 neutralized the SARS-CoV-2 variant of concern BA.5 both in vitro and in the hamster model of COVID-19 following nasal administration. Thus, either alone or in combination could serve as starting points for the development of new anti-viral immunotherapeutics.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , Anticuerpos Antivirales/inmunología , Camélidos del Nuevo Mundo/inmunología , Epítopos/inmunología , Epítopos/química , Cricetinae , Unión Proteica , Modelos Moleculares
8.
Lancet Microbe ; 5(7): 655-668, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703782

RESUMEN

BACKGROUND: A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS: Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS: Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION: Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING: Wellcome Trust and Department for Health and Social Care.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , Adulto , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Masculino , Adulto Joven , Reino Unido/epidemiología , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Adolescente , Voluntarios Sanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Vacunación/métodos
9.
J Med Chem ; 66(4): 2663-2680, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36757959

RESUMEN

Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.


Asunto(s)
Antivirales , COVID-19 , Proteasas 3C de Coronavirus , Nitrilos , SARS-CoV-2 , Inhibidores de Proteasa Viral , Humanos , Antivirales/farmacología , Cisteína/química , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Inhibidores de Proteasa Viral/farmacología
10.
Nat Med ; 29(7): 1760-1774, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414897

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml-1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , ChAdOx1 nCoV-19 , Vacunación , Anticuerpos Antivirales
11.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

12.
Front Immunol ; 12: 738473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552597

RESUMEN

TRIM21 (Ro52/SSA1) is an E3 ubiquitin ligase with key roles in immune host defence, signal transduction, and possibly cell cycle regulation. It is also an autoantibody target in Sjögren's syndrome, systemic lupus erythematosus, and other rheumatic autoimmune diseases. Here, we summarise the structure and function of this enzyme, its roles in innate immunity, adaptive immunity and cellular homeostasis, the pathogenesis of autoimmunity against TRIM21, and the potential impacts of autoantibodies to this intracellular protein.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Inmunidad Innata , Ribonucleoproteínas/metabolismo , Animales , Anticuerpos Antinucleares/metabolismo , Enfermedades Autoinmunes/inmunología , Epítopos , Humanos , Conformación Proteica , Ribonucleoproteínas/inmunología , Transducción de Señal , Relación Estructura-Actividad
13.
Biomedicines ; 8(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352813

RESUMEN

The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-ß promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection.

15.
Nat Commun ; 7: 11653, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27337592

RESUMEN

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/ß. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.


Asunto(s)
Activación de Linfocitos/fisiología , Células T Invariantes Asociadas a Mucosa/fisiología , Virosis/inmunología , Adulto , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/fisiología , Masculino
16.
Viral Immunol ; 15(2): 337-56, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12081016

RESUMEN

Recombinant avipoxvirus vectors are attractive candidates for use in vaccination strategies for infections such as human immunodeficiency virus type 1 (HIV-1), where induction of a CD8+ T cell response is thought to be an important component of protective immunity. Here, we report the expression of a multiepitope polypeptide (TAB9) composed of the central 15 amino acids of the V3 loop from six different isolates of HIV-1 in a fowlpox virus (FWPV) vector, and the use of this vector (FPTAB9LZ) to induce strong HIV-specific CD8+ T cell responses in mice. In animals immunized twice intravenously with FPTAB9LZ, almost 2% of the CD8+ T cells in the spleen were shown to produce IFN-gamma in response to stimulation with HIV-1 peptides 1 week after the second immunization. The most dominant response was to the HIV-1 IIIB peptide. A strong HIV-specific response was also induced by intraperitoneal immunization of mice with FPTAB9LZ, whilst subcutaneous immunization elicited a weaker response. Intraperitoneal immunization with FPTAB9LZ was also shown to provide protection against challenge with a recombinant vaccinia virus expressing antigens, including those in TAB9. These results confirm the potential of FWPV vectors for use in HIV vaccination strategies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Epítopos/inmunología , Virus de la Viruela de las Aves de Corral/inmunología , Vectores Genéticos/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Fragmentos de Péptidos/inmunología , Péptidos/inmunología , Animales , Línea Celular , Vías de Administración de Medicamentos , Epítopos/genética , Epítopos de Linfocito T/genética , Virus de la Viruela de las Aves de Corral/genética , Expresión Génica , Vectores Genéticos/genética , Antígenos VIH/genética , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Inyecciones Intravenosas , Ratones , Fragmentos de Péptidos/genética , Péptidos/genética , Recombinación Genética , Bazo/citología , Linfocitos T Citotóxicos/inmunología , Vacunación , Virus Vaccinia
17.
Front Immunol ; 5: 545, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400636

RESUMEN

Innate immunity is key to the fight against the daily onslaught from viruses that our bodies are subjected to. Essential to this response are the interferons (IFNs) that prime our cells to block viral pathogens. Recent evidence suggests that the Type III (λ) IFNs are intimately associated with the immune response to hepatitis C virus (HCV) infection. Genome-wide association studies have identified polymorphisms within the IFN-λ gene locus that correlate with response to IFNα-based antiviral therapy and with spontaneous clearance of HCV infection. The mechanisms for these correlations are incompletely understood. Restricted expression of the IFN-λ receptor, and the ability of IFN-λ to induce IFN-stimulated genes in HCV-infected cells, suggest potential roles for IFN-λ in HCV therapy even in this era of directly acting antivirals. This review summarizes our current understanding of the IFN-λ family and the role of λ IFNs in the natural history of HCV infection.

18.
Bio Protoc ; 4(10)2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27257612

RESUMEN

The construction of deletion-knockout poxviruses is a useful approach to determining the function of specific virus genes. This protocol is an adaptation of the transient dominant knockout selection protocol published by Falkner and Moss (1990) for use with vaccinia virus. The protocol makes use of the dominant selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) gene (Mulligan and Berg, 1981), under the control of an early/late poxvirus promoter. The deletion viruses that are produced no longer contain a selectable marker, which may be preferable for the production of vaccines.

19.
J Leukoc Biol ; 96(4): 535-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015956

RESUMEN

Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Expresión Génica , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/genética , Hepatitis C/metabolismo , Anticuerpos contra la Hepatitis C/inmunología , Hepatitis C Crónica/genética , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/metabolismo , Humanos , Inmunidad Celular , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
J Gen Virol ; 87(Pt 12): 3545-3549, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17098969

RESUMEN

The emergence of variant fowlpox viruses (FWPVs) and increasing field use of recombinants against avian influenza H5N1 emphasize the need to monitor vaccines and to distinguish them from field strains. Five commercial vaccines, two laboratory viruses and two European field isolates were characterized by PCR and sequencing at 18 loci differing between attenuated FP9 and its pathogenic progenitor. PCR failed to discriminate between the viruses and sequence determination revealed no significant differences at any locus, except for a polymorphic locus encompassed by deletion 24 (9.3 kbp) in FP9. Surprisingly, 'novel' previously unreported sequence (spanning 1.2 kbp) was found in both European field isolates and three of the vaccines. It was absent from the other two vaccines, removed by a 1.2 kbp deletion identical to that surprisingly also observed in the completely sequenced genome of FPV USDA. This locus (H9) adds a potentially useful tool for discriminating between FWPV field isolates and vaccines.


Asunto(s)
Virus de la Viruela de las Aves de Corral/genética , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética , Vacunas Virales/genética , Secuencia de Aminoácidos , ADN Viral/química , ADN Viral/genética , Virus de la Viruela de las Aves de Corral/inmunología , Virus de la Viruela de las Aves de Corral/aislamiento & purificación , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Vacunas Sintéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA