Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 132, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594745

RESUMEN

BACKGROUND: The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS: EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS: After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION: This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.

2.
Biol Res ; 57(1): 59, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223638

RESUMEN

BACKGROUND: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets. RESULTS: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies. CONCLUSIONS: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma , Neoplasia Residual , Animales , Melanoma/genética , Melanoma/patología , Ratones , Leucemia/genética , Leucemia/patología , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Ratones Endogámicos C57BL , Proteómica , Transcriptoma , Perfilación de la Expresión Génica , Multiómica
3.
J Cell Biochem ; 123(3): 543-556, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927768

RESUMEN

Receptor-interacting protein kinase 3 (RIPK3) can induce necroptosis, apoptosis, or cell proliferation and is silenced in several hematological malignancies. We previously reported that RIPK3 activity independent of its kinase domain induces caspase-mediated p65/RelA cleavage, resulting in N-terminal 1-361 and C-terminal 362-549 fragments. We show here that a noncleavable p65/RelA D361E mutant expressed in DA1-3b leukemia cells decreases mouse survival times and that coexpression of p65/RelA fragments increases the tumorigenicity of B16F1 melanoma cells. This aggressiveness in vivo did not correlate with NF-κB activity measured in vitro. The fragments and p65/RelA D361E mutant induced different expression profiles in DA1-3b and B16F1 cells. Stemness markers were affected: p65/RelA D361E increased ALDH activity in DA1-3b cells, and fragment expression increased melanoma sphere formation in B16/F1 cells. p65/RelA fragments and the D361E noncleavable mutant decreased oxidative or glycolytic cell metabolism, with differences observed between models. Thus, p65/RelA cleavage initiated by kinase-independent RIPK3 activity in cancer cells is not neutral and induces pleiotropic effects in vitro and in vivo that may vary across tumor types.


Asunto(s)
Melanoma , FN-kappa B , Animales , Apoptosis , Caspasas/metabolismo , Ratones , FN-kappa B/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/farmacología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
4.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008535

RESUMEN

Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.


Asunto(s)
Consumo de Oxígeno/fisiología , Envejecimiento/fisiología , Animales , Comunicación Celular/fisiología , Línea Celular , Línea Celular Tumoral , Respiración de la Célula/fisiología , Metabolismo Energético/fisiología , Corazón/fisiología , Humanos , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Ratas , Pruebas de Función Respiratoria/métodos
5.
Int J Med Sci ; 16(7): 931-938, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341406

RESUMEN

The diagnosis of mitochondrial diseases is a real challenge because of the vast clinical and genetic heterogeneity. Classically, the clinical examination and genetic analysis must be completed by several biochemical assays to confirm the diagnosis of mitochondrial disease. Here, we tested the validity of microscale XF technology in measuring oxygen consumption in human skin fibroblasts isolated from 5 pediatric patients with heterogeneous mitochondrial disorders. We first set up the protocol conditions to allow the determination of respiratory parameters including respiration associated with ATP production, proton leak, maximal respiration, and spare respiratory capacity with reproducibility and repeatability. Maximum respiration and spare capacity were the only parameters decreased in patients irrespective of the type of OXPHOS deficiency. These results were confirmed by high-resolution oxygraphy, the reference method to measure cellular respiration. Given the fact that microscale XF technology allows fast, automated and standardized measurements, we propose to use microscale oxygraphy among the first-line methods to screen OXPHOS deficiencies.


Asunto(s)
Fibroblastos/patología , Mitocondrias/patología , Enfermedades Mitocondriales/diagnóstico , Fosforilación Oxidativa , Oxígeno/análisis , Adolescente , Biopsia , Técnicas de Cultivo de Célula , Línea Celular , Estudios de Factibilidad , Femenino , Fibroblastos/citología , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/patología , Oxígeno/metabolismo , Consumo de Oxígeno , Reproducibilidad de los Resultados , Estudios Retrospectivos , Piel/citología , Piel/patología
6.
Life Sci ; 342: 122510, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387701

RESUMEN

Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.


Asunto(s)
Transducción de Señal , Proteína de Unión al GTP rac1 , Humanos , Proteína de Unión al GTP rac1/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Mitocondrias/metabolismo
7.
Exp Hematol ; 137: 104253, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879112

RESUMEN

Acute myeloid leukemias are a group of hematological malignancies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FMS-like tyrosine kinase 3 (FLT3) gene has led to the development of tyrosine kinase inhibitors such as quizartinib. However, achieving complete remission in patients remains challenging because these new tyrosine kinase inhibitors (TKIs) are unable to completely eradicate all leukemic cells. Residual leukemic cells persist during quizartinib treatment, leading to the rapid emergence of drug-resistant leukemia. Given that mitochondrial oxidative metabolism promotes the survival of leukemic cells after exposure to multiple anticancer drugs, we characterized the metabolism of leukemic cells that persisted during quizartinib treatment and developed metabolic strategies to eradicate them. In our study, employing biochemical and metabolomics approaches, we confirmed that the survival of leukemic cells treated with FLT3 inhibitors critically depends on maintaining mitochondrial metabolism, specifically through glutamine oxidation. We uncovered a synergistic interaction between the FLT3 inhibitor quizartinib and L-asparaginase, operating through antimetabolic mechanisms. Utilizing various models of persistent leukemia, we demonstrated that leukemic cells resistant to quizartinib are susceptible to L-asparaginase. This combined therapeutic strategy shows promise in reducing the development of resistance to FLT3 inhibitors, offering a potential strategy to enhance treatment outcomes.


Asunto(s)
Glutamina , Leucemia Mieloide Aguda , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Humanos , Glutamina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Benzotiazoles/farmacología , Línea Celular Tumoral , Animales , Ratones
8.
iScience ; 27(4): 109417, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510131

RESUMEN

Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.

9.
Front Immunol ; 14: 1181823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415975

RESUMEN

Objective: It is believed that intestinal recruitment of monocytes from Crohn's Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes. Design: The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). Results: We observed a decrease in the frequency of mo-DCs in the colon of Nod2-deficient mice, despite a similar abundance of monocytes. This decrease was independent of the changes in the gut microbiota and dysbiosis caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted in a Nod2-deficient mixed bone marrow (BM) chimera. The use of pharmacological inhibitors revealed that activation of NOD2 during monocyte-derived cell development, dominantly inhibits mTOR-mediated macrophage differentiation in a TNFα-dependent manner. These observations were supported by the identification of a TNFα-dependent response to muramyl dipeptide (MDP) that is specifically lost when CD14-expressing blood cells bear a frameshift mutation in NOD2. Conclusion: NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD.


Asunto(s)
Enfermedad de Crohn , Monocitos , Animales , Ratones , Acetilmuramil-Alanil-Isoglutamina/farmacología , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Macrófagos , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa
10.
Neoplasia ; 46: 100949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956532

RESUMEN

Triple negative breast cancer (TNBC) is an aggressive malignancy for which chemotherapy remains the standard treatment. However, between 3 and 5 years after chemotherapy, about half patients will relapse and it is essential to identify vulnerabilities of cancer cells surviving neoadujuvant therapy. In this study, we established persistent TNBC cell models after treating MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide, and then with paclitaxel, for a total of 18 weeks. The resulting chemo-persistent cell lines were more proliferative, both in vitro and in xenografted mice. Interestingly, MDA-MB-231 persistent cells became less sensitive to chemotherapeutic drugs, whereas SUM159-PT persistent cells kept similar sensitivity compared to control cells. The reduced sensitivity to chemotherapy in MDA-MB-231 persistent cells was found to be associated with an increased oxidative phosphorylation (OXPHOS) and modified levels of tricarboxylic acid cycle (TCA) intermediates. Integration of data from proteomics and metabolomics demonstrated TCA cycle among the most upregulated pathways in MDA-MB-231 persistent cells. The absence of glucose and pyruvate impeded OXPHOS in persistent cells, while the absence of glutamine did not. In contrast, OXPHOS was not modified in control cells independently of TCA substrates, indicating that MDA-MB-231 persistent cells evolved towards a more pyruvate dependent profile. Finally, the inhibition of pyruvate entry into mitochondria with UK-5099 reduced OXPHOS and re-sensitized persistent cells to therapeutic agents. Together, these findings suggest that targeting mitochondrial pyruvate metabolism may help to overcome mitochondrial adaptation of chemo-persistent TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Paclitaxel/farmacología , Mitocondrias/metabolismo , Piruvatos , Proliferación Celular
11.
J Extracell Vesicles ; 12(12): e12390, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117000

RESUMEN

Nasopharyngeal carcinoma-derived small extracellular vesicles (NPCSEVs) have an immunosuppressive impact on the tumour microenvironment. In this study, we investigated their influence on the generation of tolerogenic dendritic cells and the potential involvement of the galectin-9 (Gal9) they carry in this process. We analysed the phenotype and immunosuppressive properties of NPCSEVs and explored the ability of DCs exposed to NPCSEVs (NPCSEV-DCs) to regulate T cell proliferation. To assess their impact at the pathophysiological level, we performed real-time fluorescent chemoattraction assays. Finally, we analysed phenotype and immunosuppressive functions of NPCSEV-DCs using a proprietary anti-Gal9 neutralising antibody to assess the role of Gal9 in this effect. We described that NPCSEV-DCs were able to inhibit T cell proliferation despite their mature phenotype. These mature regulatory DCs (mregDCs) have a specific oxidative metabolism and secrete high levels of IL-4. Chemoattraction assays revealed that NPCSEVs could preferentially recruit NPCSEV-DCs. Finally, and very interestingly, the reduction of the immunosuppressive function of NPCSEV-DCs using an anti-Gal9 antibody clearly suggested an important role for vesicular Gal9 in the induction of mregDCs. These results revealed for the first time that NPCSEVs promote the emergence of mregDCs using a galectin-9 dependent mechanism and open new perspectives for antitumour immunotherapy targeting NPCSEVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Células Dendríticas , Galectinas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Microambiente Tumoral
12.
Apoptosis ; 17(4): 364-76, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22127645

RESUMEN

F14512, an epipodophyllotoxin derivative equipped with a spermine moiety, is selectively taken up by the polyamine transport system over-active in tumor cells. F14512 was identified as a selective anticancer agent with a broad spectrum of antitumor activities and is currently undergoing phase I clinical trial in onco-hematology. However, the mechanism by which F14512 exerts its selective effects on neoplastic cells remains poorly understood. In this study, using mainly P388 leukemia cells, we showed that activation of the DNA damage response by F14512 did not induce immediate apoptosis but resulted in an early growth arrest. F14512-induced G2 arrest was accompanied by the appearance of a senescence-like phenotype (characterized by an increased ß-galactosidase staining) with up-regulation of the cyclin-dependent kinase inhibitor p16, and cyclin D1. The early senescence-based cell cycle block was characterized by a marked increase of the level of the IAP protein survivin, but not cIAP2, in P388 cells as well as in three other leukemia and melanoma cell types. The Thr(34)-phosphorylated form of survivin was observed within 4 h after F14512 exposure. Inhibition of survivin by siRNA resulted in a switch from senescence-like growth arrest to apoptosis. Compared with the parental drug etoposide, F14512-induced DNA damage signaling pathway resulted in greater senescence like-growth arrest and delayed apoptosis. Collectively, our data show that senescence arrest and subsequent apoptosis are powerful mechanisms mediating the chemotherapeutic effects of F14512 and identify survivin as the molecular determinant responsible for a qualitative shift in cell fate from senescence to apoptosis upon treatment with F14512.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias/metabolismo , Podofilotoxina/análogos & derivados , Proteínas Represoras/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/fisiopatología , Podofilotoxina/farmacología , Proteínas Represoras/genética , Survivin
13.
J Hazard Mater ; 423(Pt B): 127246, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844363

RESUMEN

Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Aerosoles/toxicidad , Animales , Daño del ADN , Electrónica , Ratones
14.
Mol Metab ; 55: 101410, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863941

RESUMEN

OBJECTIVE: Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells. METHODS: Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments. RESULTS: Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death. CONCLUSION: Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.


Asunto(s)
Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Asparaginasa/metabolismo , Asparaginasa/farmacología , Asparagina/antagonistas & inhibidores , Asparagina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Mesilato de Imatinib/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo
15.
Nat Commun ; 13(1): 956, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177596

RESUMEN

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Cultivo Primario de Células
16.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944972

RESUMEN

Resistant acute myeloid leukemia (AML) exhibits mitochondrial energy metabolism changes compared to newly diagnosed AML. This phenotype is often observed by evaluating the mitochondrial oxygen consumption of blasts, but most of the oximetry protocols were established from leukemia cell lines without validation on primary leukemia cells. Moreover, the cultures and storage conditions of blasts freshly extracted from patient blood or bone marrow cause stress, which must be evaluated before determining oxidative phosphorylation (OXPHOS). Herein, we evaluated different conditions to measure the oxygen consumption of blasts using extracellular flow analyzers. We first determined the minimum number of blasts required to measure OXPHOS. Next, we compared the OXPHOS of blasts cultured for 3 h and 18 h after collection and found that to maintain metabolic organization for 18 h, cytokine supplementation is necessary. Cytokines are also needed when measuring OXPHOS in cryopreserved, thawed and recultured blasts. Next, the concentrations of respiratory chain inhibitors and uncoupler FCCP were established. We found that the FCCP concentration required to reach the maximal respiration of blasts varied depending on the patient sample analyzed. These protocols provided can be used in future clinical studies to evaluate OXPHOS as a biomarker and assess the efficacy of treatments targeting mitochondria.

17.
Mol Pharmacol ; 76(6): 1172-85, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19752199

RESUMEN

S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one. Here, we evaluated the cytotoxic and antitumor activities of the two pure cis-enantiomers and investigated the mechanism of action of both cis- and trans-racemates and their enantiomers in terms of DNA alkylation potency and locally drug-induced DNA helix opening process. Reaction with glutathione, as a detoxification process, was also studied. The trans-compounds, both as racemate or separated enantiomers, were found less potent than the corresponding cis-derivatives. Among the cis-enantiomers, the most efficient one regarding DNA alkylation bears the acetate on the reactive C1 position in the R configuration, both on purified DNA and genomic DNA extracted from cell cultures. By contrast, the most cytotoxic and tumor-active enantiomer bears the C1-acetate in the S configuration. Distinct cellular DNA-alkylation levels or covalent bonding to glutathione could not explain the differences. However, we showed that the S and R orientations of the acetate on C1 asymmetric carbon lead to different local opening of the DNA, as visualized using nuclease S1 mapping. These different interactions could lead to modulated DNA-repair, protein/DNA interaction, and apoptosis processes.


Asunto(s)
Acronina/análogos & derivados , Antineoplásicos Alquilantes/farmacología , Citotoxinas/farmacología , Sustancias Intercalantes/farmacología , Acronina/química , Acronina/farmacología , Animales , Antineoplásicos Alquilantes/química , Dominio Catalítico , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/química , Aductos de ADN/metabolismo , Humanos , Sustancias Intercalantes/química , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neoplasias Experimentales/tratamiento farmacológico , Estereoisomerismo
18.
J Med Chem ; 50(14): 3322-33, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17571868

RESUMEN

The marine natural product thiocoraline A displayed approximately equal cytotoxic activity at nanomolar concentrations in a panel of 12 human cancer cell lines. X-ray diffraction analyses of orthorhombic crystals of this DNA-binding drug revealed arrays of docked pairs of staple-shaped molecules in which one pendent hydroxyquinoline chromophore from each cysteine-rich molecule appears intercalated between the two chromophores of a facing molecule. This arrangement is in contrast to the proposed mode of binding to DNA that shows the two drug chromophores clamping two stacked base pairs, in agreement with the nearest-neighbor exclusion principle. Proof of DNA sequence recognition was obtained from both classical DNase I footprinting experiments and determination of the melting temperatures of several custom-designed fluorescently labeled oligonucleotides. A rationale for the DNA-binding behavior was gained when models of thiocoraline clamping a central step embedded in several octanucleotides were built and studied by means of unrestrained molecular dynamics simulations in aqueous solution.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Depsipéptidos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Cristalografía por Rayos X , Huella de ADN , Depsipéptidos/química , Depsipéptidos/metabolismo , Humanos , Estereoisomerismo
19.
Nucleic Acids Res ; 33(18): 6034-47, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16254080

RESUMEN

We recently reported that the antitumor triazoloacridone, compound C-1305, is a topoisomerase II poison with unusual properties. In this study we characterize the DNA interactions of C-1305 in vitro, in comparison with other topoisomerase II inhibitors. Our results show that C-1305 binds to DNA by intercalation and possesses higher affinity for GC- than AT-DNA as revealed by surface plasmon resonance studies. Chemical probing with DEPC indicated that C-1305 induces structural perturbations in DNA regions with three adjacent guanine residues. Importantly, this effect was highly specific for C-1305 since none of the other 22 DNA interacting drugs tested was able to induce similar structural changes in DNA. Compound C-1305 induced stronger structural changes in guanine triplets at higher pH which suggested that protonation/deprotonation of the drug is important for this drug-specific effect. Molecular modeling analysis predicts that the zwitterionic form of C-1305 intercalates within the guanine triplet, resulting in widening of both DNA grooves and aligning of the triazole ring with the N7 atoms of guanines. Our results show that C-1305 binds to DNA and induces very specific and unusual structural changes in guanine triplets which likely plays an important role in the cytotoxic and antitumor activity of this unique compound.


Asunto(s)
Acridinas/química , Antineoplásicos/química , ADN/química , Guanina/química , Sustancias Intercalantes/química , Inhibidores de Topoisomerasa II , Triazoles/química , Acridinas/toxicidad , Antineoplásicos/toxicidad , Dicroismo Circular , Huella de ADN , Desoxirribonucleasa I/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Sustancias Intercalantes/toxicidad , Modelos Moleculares , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Espectrofotometría , Relación Estructura-Actividad , Triazoles/toxicidad
20.
Chem Biol ; 12(11): 1201-10, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16298299

RESUMEN

We have analyzed the DNA binding properties of the antitumor agent trabectedin (ET-743, Yondelis) and different analogs, namely, ET-745, lacking the C21-hydroxyl group, and ET-637, ET-594, ET-637-OBu, with modifications at the trabectedin C domain, versus their effects on cell cycle, apoptosis, and gene expression. ET-745 failed to bind DNA, highlighting the importance of the C21-hydroxyl group for DNA binding. Analogs ranked trabectedin >> ET-637 approximately ET-594 > ET-637-OBu >> ET-745 for their DNA binding capacity; ET-637 and ET-594 display very different biological activities. Drugs were clustered in three major groups showing high (trabectedin, ET-637), intermediate (ET-637-OBu), and low (ET-594, ET-745) cytotoxic activity and similar transcriptional profiling responses. C21-hydroxyl-deficient analogs of the above-mentioned compounds showed a dramatic decrease in biological activity. Our data suggest that trabectedin interacts with an additional non-DNA target to raise an effective antitumor response, and that this interaction is favored through trabectedin-DNA complexes.


Asunto(s)
Antineoplásicos/metabolismo , Antineoplásicos/farmacología , ADN/metabolismo , Dioxoles/metabolismo , Dioxoles/farmacología , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Antineoplásicos/química , Secuencia de Bases , Caspasa 3 , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , ADN/química , ADN/genética , Dioxoles/química , Activación Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Isoquinolinas/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Estructura Molecular , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Especificidad por Sustrato , Temperatura , Tetrahidroisoquinolinas , Trabectedina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA