Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 591(7850): 482-487, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33503651

RESUMEN

Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.


Asunto(s)
Anticuerpos Antivirales/análisis , Técnicas Biosensibles/métodos , Virus de la Hepatitis B/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Troponina I/análisis , Anticuerpos Antivirales/inmunología , Técnicas Biosensibles/normas , Toxinas Botulínicas/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Límite de Detección , Luminiscencia , Fosfoproteínas/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Receptor ErbB-2/análisis , Sensibilidad y Especificidad , Proteínas de la Matriz Viral/inmunología
2.
Proc Natl Acad Sci U S A ; 120(46): e2306129120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37939083

RESUMEN

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs). We tested two distinct libraries: a low-diversity library composed of synNC surface mutations (45 variants) and a high-diversity library composed of synNCs displaying miniproteins with binder-like properties (6.2 million variants). While we did not identify any variants from the low-diversity surface library that yielded therapeutically relevant changes in biodistribution, the high-diversity miniprotein display library yielded variants that shifted accumulation toward lungs or muscles in just two rounds of in vivo selection. Our approach should contribute to achieving specific tissue homing patterns and identifying targeting ligands for diseases of interest.


Asunto(s)
Biblioteca de Péptidos , Proteínas , Distribución Tisular , Nucleocápside , Mutación
3.
Nature ; 572(7768): 205-210, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341284

RESUMEN

Allosteric regulation of protein function is widespread in biology, but is challenging for de novo protein design as it requires the explicit design of multiple states with comparable free energies. Here we explore the possibility of designing switchable protein systems de novo, through the modulation of competing inter- and intramolecular interactions. We design a static, five-helix 'cage' with a single interface that can interact either intramolecularly with a terminal 'latch' helix or intermolecularly with a peptide 'key'. Encoded on the latch are functional motifs for binding, degradation or nuclear export that function only when the key displaces the latch from the cage. We describe orthogonal cage-key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by key. The ability to design switchable protein functions that are controlled by induced conformational change is a milestone for de novo protein design, and opens up new avenues for synthetic biology and cell engineering.


Asunto(s)
Regulación Alostérica , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/síntesis química , Proteína 11 Similar a Bcl2/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Unión Proteica , Transporte de Proteínas , Proteínas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética
4.
Nat Chem Biol ; 17(4): 394-402, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33462496

RESUMEN

Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Edición Génica/métodos , Recombinación Homóloga/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Caulobacter crescentus/metabolismo , ADN/química , ADN/genética , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/metabolismo , Recombinación Homóloga/genética , Lactococcus/metabolismo , Mycobacterium smegmatis/metabolismo , Dominios Proteicos/genética
5.
Nature ; 552(7685): 415-420, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29236688

RESUMEN

The challenges of evolution in a complex biochemical environment, coupling genotype to phenotype and protecting the genetic material, are solved elegantly in biological systems by the encapsulation of nucleic acids. In the simplest examples, viruses use capsids to surround their genomes. Although these naturally occurring systems have been modified to change their tropism and to display proteins or peptides, billions of years of evolution have favoured efficiency at the expense of modularity, making viral capsids difficult to engineer. Synthetic systems composed of non-viral proteins could provide a 'blank slate' to evolve desired properties for drug delivery and other biomedical applications, while avoiding the safety risks and engineering challenges associated with viruses. Here we create synthetic nucleocapsids, which are computationally designed icosahedral protein assemblies with positively charged inner surfaces that can package their own full-length mRNA genomes. We explore the ability of these nucleocapsids to evolve virus-like properties by generating diversified populations using Escherichia coli as an expression host. Several generations of evolution resulted in markedly improved genome packaging (more than 133-fold), stability in blood (from less than 3.7% to 71% of packaged RNA protected after 6 hours of treatment), and in vivo circulation time (from less than 5 minutes to approximately 4.5 hours). The resulting synthetic nucleocapsids package one full-length RNA genome for every 11 icosahedral assemblies, similar to the best recombinant adeno-associated virus vectors. Our results show that there are simple evolutionary paths through which protein assemblies can acquire virus-like genome packaging and protection. Considerable effort has been directed at 'top-down' modification of viruses to be safe and effective for drug delivery and vaccine applications; the ability to design synthetic nanomaterials computationally and to optimize them through evolution now enables a complementary 'bottom-up' approach with considerable advantages in programmability and control.


Asunto(s)
Bioingeniería , Evolución Molecular Dirigida , Genoma Viral , Nucleocápside/genética , Nucleocápside/metabolismo , ARN Viral/metabolismo , Ensamble de Virus , Animales , Sistemas de Liberación de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Aptitud Genética , Terapia Genética , Virus de la Inmunodeficiencia Bovina/química , Virus de la Inmunodeficiencia Bovina/genética , Ratones , Modelos Moleculares , Nucleocápside/química , ARN Mensajero/metabolismo , Selección Genética
6.
Proc Natl Acad Sci U S A ; 117(24): 13689-13698, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32467157

RESUMEN

Exploiting bacteriophage-derived homologous recombination processes has enabled precise, multiplex editing of microbial genomes and the construction of billions of customized genetic variants in a single day. The techniques that enable this, multiplex automated genome engineering (MAGE) and directed evolution with random genomic mutations (DIvERGE), are however, currently limited to a handful of microorganisms for which single-stranded DNA-annealing proteins (SSAPs) that promote efficient recombineering have been identified. Thus, to enable genome-scale engineering in new hosts, efficient SSAPs must first be found. Here we introduce a high-throughput method for SSAP discovery that we call "serial enrichment for efficient recombineering" (SEER). By performing SEER in Escherichia coli to screen hundreds of putative SSAPs, we identify highly active variants PapRecT and CspRecT. CspRecT increases the efficiency of single-locus editing to as high as 50% and improves multiplex editing by 5- to 10-fold in E. coli, while PapRecT enables efficient recombineering in Pseudomonas aeruginosa, a concerning human pathogen. CspRecT and PapRecT are also active in other, clinically and biotechnologically relevant enterobacteria. We envision that the deployment of SEER in new species will pave the way toward pooled interrogation of genotype-to-phenotype relationships in previously intractable bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Pseudomonas aeruginosa/genética , Recombinación Genética , Ingeniería Genética , Genoma Bacteriano , Mutación
7.
Annu Rev Microbiol ; 71: 557-577, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28697669

RESUMEN

The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.


Asunto(s)
Código Genético , Ingeniería Metabólica/métodos , Aminoácidos , Biotecnología/métodos , Codón , Biosíntesis de Proteínas
8.
Nature ; 518(7537): 55-60, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25607366

RESUMEN

Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Contención de Riesgos Biológicos/métodos , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Organismos Modificados Genéticamente/genética , Biología Sintética/métodos , Evolución Biológica , Codón/genética , Ecosistema , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Código Genético/genética , Ingeniería Genética/métodos , Viabilidad Microbiana/genética , Mutación/genética , Organismos Modificados Genéticamente/metabolismo , Seguridad , Selección Genética
9.
Proc Natl Acad Sci U S A ; 115(21): E4940-E4949, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735666

RESUMEN

Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed "codon usage bias." Previous studies have demonstrated that synonymous changes in a coding sequence can exert significant cis effects on the gene's expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes in Escherichia coli This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation.


Asunto(s)
Codón/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteoma/análisis , ARN de Transferencia/metabolismo , Transcriptoma , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Evolución Molecular , Sistemas de Lectura Abierta , Proteoma/genética , ARN de Transferencia/genética
10.
Nat Chem Biol ; 13(4): 446-450, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192410

RESUMEN

In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl-tRNA synthetase and tRNA (TrpRS-tRNATrp) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli-optimized counterpart from Saccharomyces cerevisiae, and then reintroducing the liberated E. coli TrpRS-tRNATrp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS-tRNATrp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl-tRNA synthetase (aaRS)-tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS-tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.


Asunto(s)
Escherichia coli/genética , Eucariontes/genética , Código Genético/genética , ARN de Transferencia/genética , Triptófano-ARNt Ligasa/metabolismo , Ingeniería Genética , Células HEK293 , Humanos , Conformación Molecular , ARN de Transferencia/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(38): E5588-97, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601680

RESUMEN

The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 "recalcitrant" AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional "safe replacement zone" (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.


Asunto(s)
Arginina/genética , Escherichia coli/genética , ARN Mensajero/genética , Aminoácidos/genética , Codón/genética , Genes Esenciales/genética , Código Genético , Genoma Bacteriano , Biosíntesis de Proteínas/genética , ARN Mensajero/biosíntesis
12.
Nucleic Acids Res ; 44(5): e43, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26553805

RESUMEN

While the cost of DNA sequencing has dropped by five orders of magnitude in the past decade, DNA synthesis remains expensive for many applications. Although DNA microarrays have decreased the cost of oligonucleotide synthesis, the use of array-synthesized oligos in practice is limited by short synthesis lengths, high synthesis error rates, low yield and the challenges of assembling long constructs from complex pools. Toward addressing these issues, we developed a protocol for multiplex pairwise assembly of oligos from array-synthesized oligonucleotide pools. To evaluate the method, we attempted to assemble up to 2271 targets ranging in length from 192-252 bases using pairs of array-synthesized oligos. Within sets of complexity ranging from 131-250 targets, we observed error-free assemblies for 90.5% of all targets. When all 2271 targets were assembled in one reaction, we observed error-free constructs for 70.6%. While the assembly method intrinsically increased accuracy to a small degree, we further increased accuracy by using a high throughput 'Dial-Out PCR' protocol, which combines Illumina sequencing with an in-house set of unique PCR tags to selectively amplify perfect assemblies from complex synthetic pools. This approach has broad applicability to DNA assembly and high-throughput functional screens.


Asunto(s)
Algoritmos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligonucleótidos/síntesis química , Reacción en Cadena de la Polimerasa/métodos , ADN/química , Cartilla de ADN/síntesis química , Etiquetas de Secuencia Expresada/química , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oligonucleótidos/genética
14.
Nucleic Acids Res ; 42(1): 499-508, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24049072

RESUMEN

The discovery of diverse codon reassignment events has demonstrated that the canonical genetic code is not universal. Studying coding reassignment at the molecular level is critical for understanding genetic code evolution, and provides clues to genetic code manipulation in synthetic biology. Here we report a novel reassignment event in the mitochondria of Ashbya (Eremothecium) gossypii, a filamentous-growing plant pathogen related to yeast (Saccharomycetaceae). Bioinformatics studies of conserved positions in mitochondrial DNA-encoded proteins suggest that CUU and CUA codons correspond to alanine in A. gossypii, instead of leucine in the standard code or threonine in yeast mitochondria. Reassignment of CUA to Ala was confirmed at the protein level by mass spectrometry. We further demonstrate that a predicted tRNA(Ala)UAG is transcribed and accurately processed in vivo, and is responsible for Ala reassignment. Enzymatic studies reveal that tRNA(Ala)UAG is efficiently recognized by A. gossypii mitochondrial alanyl-tRNA synthetase (AgAlaRS). AlaRS typically recognizes the G3:U70 base pair of tRNA(Ala); a G3A change in Ashbya tRNA(Ala)UAG abolishes its recognition by AgAlaRS. Conversely, an A3G mutation in Saccharomyces cerevisiae tRNA(Thr)UAG confers tRNA recognition by AgAlaRS. Our work highlights the dynamic feature of natural genetic codes in mitochondria, and the relative simplicity by which tRNA identity may be switched.


Asunto(s)
Codón , Eremothecium/genética , Mitocondrias/genética , ARN de Transferencia de Alanina/metabolismo , Alanina/metabolismo , Alanina-ARNt Ligasa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Eremothecium/enzimología , Leucina/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia de Alanina/química
15.
Nucleic Acids Res ; 42(7): 4779-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452804

RESUMEN

Selection has been invaluable for genetic manipulation, although counter-selection has historically exhibited limited robustness and convenience. TolC, an outer membrane pore involved in transmembrane transport in E. coli, has been implemented as a selectable/counter-selectable marker, but counter-selection escape frequency using colicin E1 precludes using tolC for inefficient genetic manipulations and/or with large libraries. Here, we leveraged unbiased deep sequencing of 96 independent lineages exhibiting counter-selection escape to identify loss-of-function mutations, which offered mechanistic insight and guided strain engineering to reduce counter-selection escape frequency by ∼40-fold. We fundamentally improved the tolC counter-selection by supplementing a second agent, vancomycin, which reduces counter-selection escape by 425-fold, compared colicin E1 alone. Combining these improvements in a mismatch repair proficient strain reduced counter-selection escape frequency by 1.3E6-fold in total, making tolC counter-selection as effective as most selectable markers, and adding a valuable tool to the genome editing toolbox. These improvements permitted us to perform stable and continuous rounds of selection/counter-selection using tolC, enabling replacement of 10 alleles without requiring genotypic screening for the first time. Finally, we combined these advances to create an optimized E. coli strain for genome engineering that is ∼10-fold more efficient at achieving allelic diversity than previous best practices.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Ingeniería Genética/métodos , Proteínas de Transporte de Membrana/genética , Alelos , Biomarcadores , Escherichia coli/genética , Eliminación de Gen , Duplicación de Gen , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo
16.
Chembiochem ; 15(12): 1782-6, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24867343

RESUMEN

The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing recognition of their first three bases by endogenous host tRNAs or release factors. Deletion of release factor 1 in a genomically recoded strain of E. coli (E. coli C321), in which all endogenous amber stop codons (UAG) are replaced with UAA, abolished UAG mediated translation termination. Here we show that a Methanocaldococcus jannaschii-derived frame-shift suppressor tRNA/aminoacyl-tRNA synthetase pair enhanced UAGN suppression efficiency in this recoded bacterial strain. These results demonstrate that efficient quadruplet codons for encoding non-native amino acids can be generated by eliminating competing triplet codon recognition at the ribosome.


Asunto(s)
Aminoácidos/genética , Codón de Terminación/genética , Methanocaldococcus/clasificación , Methanocaldococcus/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Methanocaldococcus/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Supresión Genética/genética
17.
Nucleic Acids Res ; 40(17): e132, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22638574

RESUMEN

Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.


Asunto(s)
Ingeniería Genética/métodos , Oligonucleótidos/química , Cromosomas Bacterianos , Escherichia coli/genética , Genoma Bacteriano
18.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37714150

RESUMEN

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética
19.
Nat Biotechnol ; 41(4): 532-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316485

RESUMEN

The therapeutic potential of recombinant cytokines has been limited by the severe side effects of systemic administration. We describe a strategy to reduce the dose-limiting toxicities of monomeric cytokines by designing two components that require colocalization for activity and that can be independently targeted to restrict activity to cells expressing two surface markers. We demonstrate the approach with a previously designed mimetic of cytokines interleukin-2 and interleukin-15-Neoleukin-2/15 (Neo-2/15)-both for trans-activating immune cells surrounding targeted tumor cells and for cis-activating directly targeted immune cells. In trans-activation mode, tumor antigen targeting of the two components enhanced antitumor activity and attenuated toxicity compared with systemic treatment in syngeneic mouse melanoma models. In cis-activation mode, immune cell targeting of the two components selectively expanded CD8+ T cells in a syngeneic mouse melanoma model and promoted chimeric antigen receptor T cell activation in a lymphoma xenograft model, enhancing antitumor efficacy in both cases.


Asunto(s)
Citocinas , Melanoma , Ratones , Animales , Humanos , Interleucina-2/uso terapéutico , Linfocitos T CD8-positivos , Inmunoterapia , Melanoma/tratamiento farmacológico
20.
ACS Synth Biol ; 9(9): 2316-2323, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32816470

RESUMEN

To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Colocalization triggers a conformational change in the switch from an inactive closed state to an active open state with an exposed functional peptide. We prototype the system in yeast and demonstrate that DNA binding triggers activation of the switch, recruitment of a transcription factor, and expression of a downstream reporter gene. This DNA-triggered Co-LOCKR switch provides a platform to engineer sophisticated functions that should only be executed at a specific target site within the genome, with potential applications in a wide range of synthetic systems including epigenetic regulation, imaging, and genetic logic circuits.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , ADN/metabolismo , Edición Génica/métodos , ADN/química , Genes Reporteros , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA