Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Regul Toxicol Pharmacol ; 137: 105293, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414101

RESUMEN

The assessment of human health hazards posed by chemicals traditionally relies on toxicity studies in experimental animals. However, most chemicals currently in commerce do not meet the minimum data requirements for hazard identification and dose-response analysis in human health risk assessment. Previously, we introduced a read-across framework designed to address data gaps for screening-level assessment of chemicals with insufficient in vivo toxicity information (Wang et al., 2012). It relies on inference by analogy from suitably tested source analogues to a target chemical, based on structural, toxicokinetic, and toxicodynamic similarity. This approach has been used for dose-response assessment of data-poor chemicals relevant to the U.S. EPA's Superfund program. We present herein, case studies of the application of this framework, highlighting specific examples of the use of biological similarity for chemical grouping and quantitative read-across. Based on practical knowledge and technological advances in the fields of read-across and predictive toxicology, we propose a revised framework. It includes important considerations for problem formulation, systematic review, target chemical analysis, analogue identification, analogue evaluation, and incorporation of new approach methods. This work emphasizes the integration of systematic methods and alternative toxicity testing data and tools in chemical risk assessment to inform regulatory decision-making.


Asunto(s)
Medición de Riesgo , Animales , Humanos , Medición de Riesgo/métodos
2.
Regul Toxicol Pharmacol ; 103: 301-313, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30794837

RESUMEN

Deriving human health risk estimates for environmental chemicals has traditionally relied on in vivo toxicity databases to characterize potential adverse health effects and associated dose-response relationships. In the absence of in vivo toxicity information, new approach methods (NAMs) such as read-across have the potential to fill the required data gaps. This case study applied an expert-driven read-across approach to identify and evaluate analogues to fill non-cancer oral toxicity data gaps for p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), an organochlorine contaminant known to occur at contaminated sites in the U.S. The source analogue p,p'-dichlorodiphenyltrichloroethane (DDT) and its no-observed-adverse-effect level of 0.05 mg/kg-day were proposed for the derivation of screening-level health reference values for the target chemical, p,p'-DDD. Among the primary similarity contexts (structure, toxicokinetics, and toxicodynamics), toxicokinetic considerations were instrumental in separating p,p'-DDT as the best source analogue from other potential candidates (p,p'-DDE and methoxychlor). In vitro high-throughput screening (HTS) assays from ToxCast were used to evaluate similarity in bioactivity profiles and make inferences toward plausible mechanisms of toxicity to build confidence in the read-across approach. This work demonstrated the value of NAMs such as read-across and in vitro HTS in human health risk assessment of environmental contaminants with the potential to inform regulatory decision-making.


Asunto(s)
Diclorodifenildicloroetano/efectos adversos , Contaminantes Ambientales/efectos adversos , Insecticidas/efectos adversos , Monitoreo del Ambiente , Ensayos Analíticos de Alto Rendimiento , Humanos , Medición de Riesgo
3.
J Expo Sci Environ Epidemiol ; 34(1): 136-147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37193773

RESUMEN

BACKGROUND: The number of chemicals present in the environment exceeds the capacity of government bodies to characterize risk. Therefore, data-informed and reproducible processes are needed for identifying chemicals for further assessment. The Minnesota Department of Health (MDH), under its Contaminants of Emerging Concern (CEC) initiative, uses a standardized process to screen potential drinking water contaminants based on toxicity and exposure potential. OBJECTIVE: Recently, MDH partnered with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) to accelerate the screening process via development of an automated workflow accessing relevant exposure data, including exposure new approach methodologies (NAMs) from ORD's ExpoCast project. METHODS: The workflow incorporated information from 27 data sources related to persistence and fate, release potential, water occurrence, and exposure potential, making use of ORD tools for harmonization of chemical names and identifiers. The workflow also incorporated data and criteria specific to Minnesota and MDH's regulatory authority. The collected data were used to score chemicals using quantitative algorithms developed by MDH. The workflow was applied to 1867 case study chemicals, including 82 chemicals that were previously manually evaluated by MDH. RESULTS: Evaluation of the automated and manual results for these 82 chemicals indicated reasonable agreement between the scores although agreement depended on data availability; automated scores were lower than manual scores for chemicals with fewer available data. Case study chemicals with high exposure scores included disinfection by-products, pharmaceuticals, consumer product chemicals, per- and polyfluoroalkyl substances, pesticides, and metals. Scores were integrated with in vitro bioactivity data to assess the feasibility of using NAMs for further risk prioritization. SIGNIFICANCE: This workflow will allow MDH to accelerate exposure screening and expand the number of chemicals examined, freeing resources for in-depth assessments. The workflow will be useful in screening large libraries of chemicals for candidates for the CEC program.


Asunto(s)
Agua Potable , Humanos , Estados Unidos , Flujo de Trabajo , Algoritmos , Recolección de Datos , Minnesota
4.
J Chem Phys ; 139(22): 224308, 2013 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-24329069

RESUMEN

After synthesizing the compounds N-paranitrophenylsulfonylalanine (NPNPSA) and N-paranitrophenylalanine (NPNPA), the photoelectron spectrum of the valence anion of N-paranitrophenylsulfonylalanine (NPNPSA)(-), was measured and the collision-induced dissociation (CID) pathways of deprotonated N-paranitrophenylsulfonylalanine (NPNPSA-H)(-) and deprotonated N-paranitrophenylalanine (NPNPA-H)(-) were determined. Pertinent calculations were conducted to analyze both sets of experimental data. From the valence anion photoelectron spectrum of (NPNPSA)(-), the adiabatic electron affinity (AEA) of NPNPSA was determined to be 1.7 ± 0.1 eV, while the vertical detachment energy (VDE) of (NPNPSA)(-) was found to be 2.3 ± 0.1 eV. Calculations for four low lying conformers of (NPNPSA)(-) gave AEA values in the range of 1.6-2.1 eV and VDE values in the range of 2.0-2.4 eV. These calculations are in very good agreement with the experimental values. While the NPNPA anion (NPNPSA)(-) was not observed experimentally it was studied computationally. The six low lying (NPNPSA)(-) conformers were identified and calculated to have AEA values in the range of 0.7-1.2 eV and VDE values in the range of 0.9-1.6 eV. CID was used to study the fragmentation patterns of deprotonated NPNPA and deprotonated NPNPSA. Based on the CID data and calculations, the excess charge was located on the delocalized π-orbitals of the nitrobenzene moiety. This is made evident by the fact that the dominant fragments all contained the nitrobenzene moiety even though the parent anions used for the CID study were formed via deprotonation of the carboxylic acid. The dipole-bound anions of both molecules are studied theoretically using the results of previous studies on nitrobenzene as a reference.


Asunto(s)
Dapsona/análogos & derivados , Dapsona/química , Electrones , Fenilalanina/análogos & derivados , Luz , Modelos Moleculares , Conformación Molecular , Fenilalanina/química , Estereoisomerismo
5.
J Chem Phys ; 136(11): 114512, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22443782

RESUMEN

The optical rotatory dispersion (ORD) and circular dichroism of the conformationally flexible carvone molecule has been investigated in 17 solvents and compared with results from calculations for the "free" (gas phase) molecule. The G3 method was used to determine the relative energies of the six conformers. The optical rotation of (R)-(-)-carvone at 589 nm was calculated using coupled cluster and density functional methods, including temperature-dependent vibrational corrections. Vibrational corrections are significant and are primarily associated with normal modes involving the stereogenic carbon atom and the carbonyl group, whose n → π∗ excitation plays a significant role in the chiroptical response of carvone. Without the inclusion of vibrational corrections the optical rotation calculated with CCSD and DFT has the opposite sign of experimental data. Calculations of optical rotation performed in solution using the polarizable continuum model were also opposite in sign when compared to that of the experiment.


Asunto(s)
Monoterpenos/química , Teoría Cuántica , Monoterpenos Ciclohexánicos , Temperatura , Vibración
6.
Regul Toxicol Pharmacol ; 63(1): 10-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22369873

RESUMEN

Hazard identification and dose-response assessment for chemicals of concern found in various environmental media are typically based on epidemiological and/or animal toxicity data. However, human health risk assessments are often requested for many compounds found at contaminated sites throughout the US that have limited or no available toxicity information from either humans or animals. To address this issue, recent efforts have focused on expanding the use of structure-activity relationships (SAR) approaches to identify appropriate surrogates and/or predict toxicological phenotype(s) and associated adverse effect levels. A tiered surrogate approach (i.e., decision tree) based on three main types of surrogates (structural, metabolic, and toxicity-like) has been developed. To select the final surrogate chemical and its surrogate toxicity value(s), a weight-of-evidence approach based on the proposed decision tree is applied. In addition, a case study with actual toxicity data serves as the evaluation to support our tiered surrogate approach. Future work will include case studies demonstrating the utility of the surrogate approach under different scenarios for data-poor chemicals. In conclusion, our surrogate approach provides a reasonable starting point for identifying potential toxic effects, target organs, and/or modes-of-action, and for selecting surrogate chemicals from which to derive either reference or risk values.


Asunto(s)
Contaminantes Ambientales/toxicidad , Medición de Riesgo/métodos , Animales , Derivados del Benceno/toxicidad , Árboles de Decisión , Humanos
7.
Toxics ; 11(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36668763

RESUMEN

For over a decade, New Approach Methodologies (NAMs) such as structure-activity/read-across, -omics technologies, and Adverse Outcome Pathway (AOP), have been considered within regulatory communities as alternative sources of chemical and biological information potentially relevant to human health risk assessment. Integration of NAMs into applications such as chemical mixtures risk assessment has been limited due to the lack of validation of qualitative and quantitative application to adverse health outcomes in vivo, and acceptance by risk assessors. However, leveraging existent hazard and dose-response information, including NAM-based data, for mixture component chemicals across one or more levels of biological organization using novel approaches such as AOP 'footprinting' proposed herein, may significantly advance mixtures risk assessment. AOP footprinting entails the systematic stepwise profiling and comparison of all known or suspected AOPs involved in a toxicological effect at the level of key event (KE). The goal is to identify key event(s) most proximal to an adverse outcome within each AOP suspected of contributing to a given health outcome at which similarity between mixture chemicals can be confidently determined. These key events are identified as the 'footprint' for a given AOP. This work presents the general concept, and a hypothetical example application, of AOP footprinting as a key methodology for the integration of NAM data into mixtures risk assessment.

8.
J Vis Exp ; (181)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35435902

RESUMEN

Enhancers are binding platforms for a diverse array of transcription factors that drive specific expression patterns of tissue- and cell-type-specific genes. Multiple means of assessing non-coding DNA and various chromatin states have proven useful in predicting the presence of enhancer sequences in the genome, but validating the activity of these sequences and finding the organs and developmental stages they are active in is a labor-intensive process. Recent advances in adeno-associated virus (AAV) vectors have enabled the widespread delivery of transgenes to mouse tissues, enabling in vivo enhancer testing without necessitating a transgenic animal. This protocol shows how a reporter construct that expresses EGFP under the control of a minimal promoter, which does not drive significant expression on its own, can be used to study the activity patterns of candidate enhancer sequences in the mouse brain. An AAV-packaged reporter construct is delivered to the mouse brain and incubated for 1-4 weeks, after which the animal is sacrificed, and brain sections are observed under a microscope. EGFP appears in cells in which the tested enhancer is sufficient to initiate gene expression, pinpointing the location and developmental stage in which the enhancer is active in the brain. Standard cloning methods, low-cost AAV packaging, and expanding AAV serotypes and methods for in vivo delivery and standard imaging readout make this an accessible approach for the study of how gene expression is regulated in the brain.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Encéfalo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos/genética , Ratones , Regiones Promotoras Genéticas , Transgenes
9.
Toxicol Sci ; 185(1): 1-9, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34718822

RESUMEN

Federal statutes authorize several agencies to protect human populations from chemical emergencies and provide guidance to evacuate, clean, and reoccupy affected areas. Each of the authorized federal agencies has developed programs to provide managers, public health officials, and regulators, with a rapid assessment of potential hazards and risks associated with chemical emergencies. Emergency responses vary based on exposure scenarios, routes, temporal considerations, and the substance(s) present. Traditional chemical assessments and derivation of toxicity values are time-intensive, typically requiring large amounts of human epidemiological and experimental animal data. When a rapid assessment of health effects is needed, an integrated computational approach of augmenting extant toxicity data with in vitro (new alternative toxicity testing methods) data can provide a quick, evidence-based solution. In so doing, multiple streams of data can be used, including literature searches, hazard, dose-response, physicochemical, environmental fate, transport property data, in vitro cell bioactivity testing, and toxicogenomics. The field of toxicology is moving, towards increased use of this approach as it transforms from observational to predictive science. The challenge is to objectively and transparently derive toxicity values using this approach to protect human health and the environment. Presented here are examples and efforts toward rapid risk assessment that demonstrate unified, parallel, and complementary work to provide timely protection in times of chemical emergency.


Asunto(s)
Agencias Gubernamentales , Salud Pública , Técnicas In Vitro , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
10.
Environ Int ; 154: 106566, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33934018

RESUMEN

For the past six decades, human health risk assessment of chemicals has relied on in vivo data from human epidemiological and experimental animal toxicological studies to inform the derivation of non-cancer toxicity values. The ongoing evolution of this risk assessment paradigm in an environmental landscape of data-poor chemicals has highlighted the need to develop and implement non-testing methods, so-called New Approach Methodologies (NAMs). NAMs include a growing number of in silico and in vitro data streams designed to inform hazard properties of chemicals, including kinetics and dynamics at different levels of biological organization, environmental fate and transport, and exposure. NAMs provide a fit-for-purpose science-basis for human hazard and risk characterization of chemicals ranging from data-gap filling applications to broad evidence-based decision-making. Systematic assembly and delivery of empirical and predicted data for chemicals are paramount to advancing chemical evaluation, and software tools serve an essential role in delivering these data to the scientific community. The CompTox Chemicals Dashboard (from here on referred to as the "Dashboard") is one such tool and is a publicly available web-based application developed by the US Environmental Protection Agency to provide access to chemistry, toxicity and exposure information for ~900,000 chemicals. The Dashboard is increasingly becoming a valuable resource for assessors tasked with the evaluation of potential human health risks associated with chemical exposures. In this context, the significant amount of information present in the Dashboard facilitates: 1) assembly of information on physicochemical properties and environmental fate and transport and exposure parameters and metrics; 2) identification of cancer and non-cancer health effects from extant human and experimental animal studies in the public domain and/or information not available in the public domain (i.e., "grey literature"); 3) systematic literature searching and review for developing cancer and non-cancer hazard evidence bases; and 4) access to mechanistic information that can aid or augment the analysis of traditional toxicology evidence bases, or potentially, serve as the primary basis for informing hazard identification and dose-response when traditional bioassay data are lacking. Finally, in silico predictive tools developed to conduct structure-activity or read-across analyses are also available within the Dashboard. This practical tutorial is intended to address key questions from the human health risk assessment community dealing with chemicals in both food and in the environment. Perspectives for future development or refinement of the Dashboard highlight foreseen activities to further support the research and risk assessment community in cancer and non-cancer chemical evaluations.


Asunto(s)
United States Environmental Protection Agency , Animales , Simulación por Computador , Humanos , Medición de Riesgo , Estados Unidos
11.
J Mol Biol ; 433(11): 166841, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33539886

RESUMEN

Coarse-grained models have long been considered indispensable tools in the investigation of biomolecular dynamics and assembly. However, the process of simulating such models is arduous because unconventional force fields and particle attributes are often needed, and some systems are not in thermal equilibrium. Although modern molecular dynamics programs are highly adaptable, software designed for preparing all-atom simulations typically makes restrictive assumptions about the nature of the particles and the forces acting on them. Consequently, the use of coarse-grained models has remained challenging. Moltemplate is a file format for storing coarse-grained molecular models and the forces that act on them, as well as a program that converts moltemplate files into input files for LAMMPS, a popular molecular dynamics engine. Moltemplate has broad scope and an emphasis on generality. It accommodates new kinds of forces as they are developed for LAMMPS, making moltemplate a popular tool with thousands of users in computational chemistry, materials science, and structural biology. To demonstrate its wide functionality, we provide examples of using moltemplate to prepare simulations of fluids using many-body forces, coarse-grained organic semiconductors, and the motor-driven supercoiling and condensation of an entire bacterial chromosome.


Asunto(s)
Simulación de Dinámica Molecular , Física , Programas Informáticos , Bacterias/metabolismo , ADN/química
12.
Elife ; 102021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34605404

RESUMEN

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.


Asunto(s)
Encéfalo/metabolismo , Elementos de Facilitación Genéticos , Animales , Encéfalo/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones
13.
Genome Med ; 13(1): 69, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33910599

RESUMEN

BACKGROUND: Genes with multiple co-active promoters appear common in brain, yet little is known about functional requirements for these potentially redundant genomic regulatory elements. SCN1A, which encodes the NaV1.1 sodium channel alpha subunit, is one such gene with two co-active promoters. Mutations in SCN1A are associated with epilepsy, including Dravet syndrome (DS). The majority of DS patients harbor coding mutations causing SCN1A haploinsufficiency; however, putative causal non-coding promoter mutations have been identified. METHODS: To determine the functional role of one of these potentially redundant Scn1a promoters, we focused on the non-coding Scn1a 1b regulatory region, previously described as a non-canonical alternative transcriptional start site. We generated a transgenic mouse line with deletion of the extended evolutionarily conserved 1b non-coding interval and characterized changes in gene and protein expression, and assessed seizure activity and alterations in behavior. RESULTS: Mice harboring a deletion of the 1b non-coding interval exhibited surprisingly severe reductions of Scn1a and NaV1.1 expression throughout the brain. This was accompanied by electroencephalographic and thermal-evoked seizures, and behavioral deficits. CONCLUSIONS: This work contributes to functional dissection of the regulatory wiring of a major epilepsy risk gene, SCN1A. We identified the 1b region as a critical disease-relevant regulatory element and provide evidence that non-canonical and seemingly redundant promoters can have essential function.


Asunto(s)
Epilepsia/genética , Regulación de la Expresión Génica , Canal de Sodio Activado por Voltaje NAV1.1/genética , Eliminación de Secuencia/genética , Animales , Atención , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Cromatina/metabolismo , Secuencia Conservada/genética , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/diagnóstico por imagen , Evolución Molecular , Femenino , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Prueba de Campo Abierto , Fenotipo , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Supervivencia , Temperatura , Transactivadores/metabolismo
14.
Prog Mol Biol Transl Sci ; 171: 237-263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475524

RESUMEN

Although there is associative evidence linking fecal microbiome profile to health and disease, many studies have not considered the confounding effects of dietary intake. Consuming food provides fermentable substrate which sustains the microbial ecosystem that resides with most abundance in the colon. Western, Mediterranean and vegetarian dietary patterns have a role in modulating the gut microbiota, as do trending restrictive diets such the paleolithic and ketogenic. Altering the amount or ratio of carbohydrate, protein and fat, particularly at the extremes of intake, impacts the microbiome. Diets high in fermentable carbohydrates support the relative abundance of Bifidobacterium, Prevotella, Ruminococcus, Dorea and Roseburia, among others, capable of degrading polysaccharides, oligosaccharides and sugars. Conversely, very high fat diets increase bile-resistant organisms such as Bilophila and Bacteroides. Food form, whole foods vs. ultra-processed, alters the provision of macronutrient substrate to the colon due to differing digestibility, and thereby may impact the microbiota and its metabolic activity. In addition, phytochemicals in plant-based foods have specific and possibly prebiotic effects on the microbiome. Further, food ingredients such as certain low-calorie sweeteners enhance Bifidobacterium spp. The weight of evidence to date suggests a high level of interindividual variability in the human microbiome vs. clearly defined, dietary-induced profiles. Healthful dietary patterns, emphasizing plant foods high in microbial-available carbohydrate, support favorable microbiome profiles active in saccharolytic fermentation. Future research into diet and microbiome should consider the balance of gut microbial-generated metabolites, an important link between microbiome profile and human health.


Asunto(s)
Dieta , Microbiota/efectos de los fármacos , Nutrientes/administración & dosificación , Nutrientes/análisis , Humanos
15.
Toxicol Sci ; 173(1): 202-225, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532525

RESUMEN

Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the potential to accelerate the pace of human health safety evaluation by informing screening-level assessments. The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals. PODs derived from new approach methodologies (NAMs) were obtained for this comparison using the 50th (PODNAM, 50) and the 95th (PODNAM, 95) percentile credible interval estimates for the steady-state plasma concentration used in in vitro to in vivo extrapolation of administered equivalent doses. Of the 448 substances, 89% had a PODNAM, 95 that was less than the traditional POD (PODtraditional) value. For the 48 substances for which PODtraditional < PODNAM, 95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, and there was an enrichment of chemical structural features associated with organophosphate and carbamate insecticides. When PODtraditional < PODNAM, 95, it did not appear to result from an enrichment of PODtraditional based on a particular study type (eg, developmental, reproductive, and chronic studies). Bioactivity:exposure ratios, useful for identification of substances with potential priority, demonstrated that high-throughput exposure predictions were greater than the PODNAM, 95 for 11 substances. When compared with threshold of toxicological concern (TTC) values, the PODNAM, 95 was greater than the corresponding TTC value 90% of the time. This work demonstrates the feasibility, and continuing challenges, of using in vitro bioactivity as a protective estimate of POD in screening-level assessments via a case study.


Asunto(s)
Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Nivel sin Efectos Adversos Observados
16.
Environ Health Perspect ; 127(1): 14501, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30632786

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated substances of interest to researchers, regulators, and the public due to their widespread presence in the environment. A few PFASs have comparatively extensive amounts of human epidemiological, exposure, and experimental animal toxicity data (e.g., perfluorooctanoic acid), whereas little toxicity and exposure information exists for much of the broader set of PFASs. Given that traditional approaches to generate toxicity information are resource intensive, new approach methods, including in vitro high-throughput toxicity (HTT) testing, are being employed to inform PFAS hazard characterization and further (in vivo) testing. The U.S. Environmental Protection Agency (EPA) and the National Toxicology Program (NTP) are collaborating to develop a risk-based approach for conducting PFAS toxicity testing to facilitate PFAS human health assessments. This article describes the construction of a PFAS screening library and the process by which a targeted subset of 75 PFASs were selected. Multiple factors were considered, including interest to the U.S. EPA, compounds within targeted categories, structural diversity, exposure considerations, procurability and testability, and availability of existing toxicity data. Generating targeted HTT data for PFASs represents a new frontier for informing priority setting. https://doi.org/10.1289/EHP4555.


Asunto(s)
Fluorocarburos/química , Fluorocarburos/toxicidad , Toxicocinética , Sustancias Peligrosas/química , Sustancias Peligrosas/toxicidad , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Estados Unidos , United States Environmental Protection Agency
17.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835285

RESUMEN

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Asunto(s)
Biología Computacional/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos , Toma de Decisiones , Humanos , Tecnología de la Información , Medición de Riesgo , Toxicocinética , Estados Unidos , United States Environmental Protection Agency
18.
Toxicol Sci ; 157(1): 85-99, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123101

RESUMEN

The rate of new chemical development in commerce combined with a paucity of toxicity data for legacy chemicals presents a unique challenge for human health risk assessment. There is a clear need to develop new technologies and incorporate novel data streams to more efficiently inform derivation of toxicity values. One avenue of exploitation lies in the field of transcriptomics and the application of gene expression analysis to characterize biological responses to chemical exposures. In this context, gene set enrichment analysis (GSEA) was employed to evaluate tissue-specific, dose-response gene expression data generated following exposure to multiple chemicals for various durations. Patterns of transcriptional enrichment were evident across time and with increasing dose, and coordinated enrichment plausibly linked to the etiology of the biological responses was observed. GSEA was able to capture both transient and sustained transcriptional enrichment events facilitating differentiation between adaptive versus longer term molecular responses. When combined with benchmark dose (BMD) modeling of gene expression data from key drivers of biological enrichment, GSEA facilitated characterization of dose ranges required for enrichment of biologically relevant molecular signaling pathways, and promoted comparison of the activation dose ranges required for individual pathways. Median transcriptional BMD values were calculated for the most sensitive enriched pathway as well as the overall median BMD value for key gene members of significantly enriched pathways, and both were observed to be good estimates of the most sensitive apical endpoint BMD value. Together, these efforts support the application of GSEA to qualitative and quantitative human health risk assessment.


Asunto(s)
Redes Reguladoras de Genes , Medición de Riesgo , Transcriptoma/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
19.
Dev Neurobiol ; 77(10): 1161-1174, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28388013

RESUMEN

The formation and stabilization of new dendritic spines is a key component of the experience-dependent neural circuit plasticity that supports learning, but the molecular maturation of nascent spines remains largely unexplored. The PSD95-family of membrane-associated guanylate kinases (PSD-MAGUKs), most notably PSD95, has a demonstrated role in promoting spine stability. However, nascent spines contain low levels of PSD95, suggesting that other members of the PSD-MAGUK family might act to stabilize nascent spines in the early stages of spiny synapse formation. Here, we used GFP-fusion constructs to quantitatively define the molecular composition of new spines, focusing on the PSD-MAGUK family. We found that PSD95 levels in new spines were as low as those previously associated with rapid subsequent spine elimination, and new spines did not achieve mature levels of PSD95 until between 12 and 20 h following new spine identification. Surprisingly, we found that the PSD-MAGUKs PSD93, SAP97, and SAP102 were also substantially less enriched in new spines. However, they accumulated in new spines more quickly than PSD95: SAP102 enriched to mature levels within 3 h, SAP97 and PSD93 enriched gradually over the course of 6 h. Intriguingly, when we restricted our analysis to only those new spines that persisted, SAP97 was the only PSD-MAGUK already present at mature levels in persistent new spines when first identified. Our findings uncover a key structural difference between nascent and mature spines, and suggest a mechanism for the stabilization of nascent spines through the sequential arrival of PSD-MAGUKs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1161-1174, 2017.


Asunto(s)
Espinas Dendríticas/enzimología , Guanilato-Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes , Hipocampo/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Células Piramidales/enzimología , Ratas , Técnicas de Cultivo de Tejidos
20.
Environ Health Perspect ; 124(11): 1671-1682, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27091369

RESUMEN

BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.


Asunto(s)
Monitoreo del Ambiente/métodos , Medición de Riesgo/métodos , Contaminantes Ambientales/toxicidad , Salud Pública/métodos , Salud Pública/tendencias , Medición de Riesgo/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA