Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 38(21): 4943-4956, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29724797

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers built from a variety of subunits. Some are homomeric assemblies of α subunits, others heteromeric assemblies of α and ß subunits which can adopt two stoichiometries (2α:3ß or 3α:2ß). There is evidence for the presence of heteromeric nAChRs with the two stoichiometries in the CNS, but it has not yet been possible to identify them at a given synapse. The 2α:3ß receptors are highly sensitive to agonists, whereas the 3α:2ß stoichiometric variants, initially described as low sensitivity receptors, are indeed activated by low and high concentrations of ACh. We have taken advantage of the discovery that two compounds (NS9283 and Zn) potentiate selectively the 3α:2ß nAChRs to establish (in mice of either sex) the presence of these variants at the motoneuron-Renshaw cell (MN-RC) synapse. NS9283 prolonged the decay of the two-component EPSC mediated by heteromeric nAChRs. NS9283 and Zn also prolonged spontaneous EPSCs involving heteromeric nAChRs, and one could rule out prolongations resulting from AChE inhibition by NS9283. These results establish the presence of 3α:2ß nAChRs at the MN-RC synapse. At the functional level, we had previously explained the duality of the EPSC by assuming that high ACh concentrations in the synaptic cleft account for the fast component and that spillover of ACh accounts for the slow component. The dual ACh sensitivity of 3α:2ß nAChRs now allows to attribute to these receptors both components of the EPSC.SIGNIFICANCE STATEMENT Heteromeric nicotinic receptors assemble α and ß subunits in pentameric structures, which can adopt two stoichiometries: 3α:2ß or 2α:3ß. Both stoichiometric variants are present in the CNS, but they have never been located and characterized functionally at the level of an identified synapse. Our data indicate that 3α:2ß receptors are present at the spinal cord synapses between motoneurons and Renshaw cells, where their dual mode of activation (by high concentrations of ACh for synaptic receptors, by low concentrations of ACh for extrasynaptic receptors) likely accounts for the biphasic character of the synaptic current. More generally, 3α:2ß nicotinic receptors appear unique by their capacity to operate both in the cleft of classical synapses and at extrasynaptic locations.


Asunto(s)
Receptores Nicotínicos/química , Células de Renshaw/química , Animales , Inhibidores de la Colinesterasa/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neostigmina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Oxadiazoles/farmacología , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Células de Renshaw/efectos de los fármacos , Sinapsis/efectos de los fármacos , Zinc/farmacología
2.
PLoS Comput Biol ; 13(9): e1005767, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28945740

RESUMEN

Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.


Asunto(s)
Potenciales de Acción/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Husos Musculares/fisiología , Músculo Esquelético/fisiología , Reflejo de Estiramiento/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Estimulación Física , Estrés Mecánico
3.
J Neurophysiol ; 114(3): 1963-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26269551

RESUMEN

In neonatal mice, fast- and slow-type motoneurons display different patterns of discharge. In response to a long liminal current pulse, the discharge is delayed up to several seconds in fast-type motoneurons and their firing frequency accelerates. In contrast, slow-type motoneurons discharge immediately, and their firing frequency decreases at the beginning of the pulse. Here, we identify the ionic currents that underlie the delayed firing of fast-type motoneurons. We find that the firing delay is caused by a combination of an A-like potassium current that transiently suppresses firing on a short time scale and a slowly-inactivating potassium current that inhibits the discharge over a much longer time scale. We then show how these intrinsic currents dynamically shape the discharge threshold and the frequency-input function of fast-type motoneurons. These currents contribute to the orderly recruitment of motoneurons in neonates and might play a role in the postnatal maturation of motor units.


Asunto(s)
Potenciales de Acción , Neuronas Motoras/fisiología , Potasio/metabolismo , Reclutamiento Neurofisiológico , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo
4.
Neurobiol Dis ; 82: 269-280, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26107889

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease. Human motor neurons generated from induced pluripotent stem cells (iPSc) offer new perspectives for disease modeling and drug testing in ALS. In standard iPSc-derived cultures, however, the two major phenotypic alterations of ALS--degeneration of motor neuron cell bodies and axons--are often obscured by cell body clustering, extensive axon criss-crossing and presence of unwanted cell types. Here, we succeeded in isolating 100% pure and standardized human motor neurons by a novel FACS double selection based on a p75(NTR) surface epitope and an HB9::RFP lentivirus reporter. The p75(NTR)/HB9::RFP motor neurons survive and grow well without forming clusters or entangled axons, are electrically excitable, contain ALS-relevant motor neuron subtypes and form functional connections with co-cultured myotubes. Importantly, they undergo rapid and massive cell death and axon degeneration in response to mutant SOD1 astrocytes. These data demonstrate the potential of FACS-isolated human iPSc-derived motor neurons for improved disease modeling and drug testing in ALS and related motor neuron diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Citometría de Flujo/métodos , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Adulto , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/patología , Astrocitos/fisiología , Axones/patología , Axones/fisiología , Supervivencia Celular , Células Cultivadas , Niño , Técnicas de Cocultivo , Genes Reporteros , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Lentivirus , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Mutación , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
5.
Eur J Neurosci ; 41(7): 889-900, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712471

RESUMEN

Renshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCs(α2)) in the mouse spinal cord. Immunohistochemistry and electrophysiological characterization of passive and active RCs(α2) properties confirmed that neurons genetically marked by the Chrna2-Cre mouse line together with a fluorescent reporter mouse line are Renshaw cells. Whole-cell patch-clamp recordings revealed that RCs(α2) constitute an electrophysiologically stereotyped population with a resting membrane potential of -50.5 ± 0.4 mV and an input resistance of 233.1 ± 11 MΩ. We identified a ZD7288-sensitive hyperpolarization-activated cation current (Ih) in all RCs(α2), contributing to membrane repolarization but not to the resting membrane potential in neonatal mice. Additionally, we found RCs(α2) to express small calcium-activated potassium currents (I(SK)) that, when blocked by apamin, resulted in a complete attenuation of the afterhyperpolarisation potential, increasing cellular firing frequency. We conclude that RCs(α2) can be genetically targeted through their selective Chrna2 expression and that they display currents known to modulate rebound excitation and firing frequency. The genetic identification of Renshaw cells and their electrophysiological profile is required for genetic and pharmacological manipulation as well as computational simulations with the aim to understand their functional role.


Asunto(s)
Potenciales de Acción/fisiología , Canales Iónicos/metabolismo , Receptores Nicotínicos/metabolismo , Células de Renshaw/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Apamina/farmacología , Vértebras Lumbares , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Neurotransmisores/farmacología , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Células de Renshaw/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Raíces Nerviosas Espinales/fisiología , Distribución Tisular
6.
J Neurosci ; 32(24): 8413-23, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22699921

RESUMEN

In spinal cord slices from newborn mice we have analyzed the kinetics of the EPSCs mediated by heteromeric nicotinic receptors at the motoneuron-Renshaw cell (MN-RC) synapse. The miniature EPSCs decay with a time constant of 13.0 ± 1.1 ms whereas the decay of the evoked EPSCs (eEPSCs) is biphasic, with time constants of 15.6 ± 0.8 and 124.8 ± 9.0 ms. The slow component becomes prominent during a repetitive stimulation, but its time constant is unchanged. It is selectively reduced by the addition of acetylcholinesterase (AChE), and thus appears to involve ACh spillover. The constancy of the slow time constant during a train is best explained by a local spillover activating high-affinity receptors. In many cells a fraction of the eEPSC originates in neighboring RCs and is transmitted by the low-pass filter of the gap junctions. The component transmitted electrically can be eliminated by meclofenamic acid, a blocker of gap junctions. The local spillover produced by a repetitive stimulation was compared with the long-range spillover produced by inactivation of AChE. The pharmacological inactivation of AChE by neostigmine caused the appearance of an ultra-slow (second range) decay component in eEPSCs and also a continuous inward current interpreted as resulting from a continuous ACh presence. In animals lacking functional AChE in the CNS (PRiMA(-/-) mice) the EPSCs resembled those observed in neostigmine but the steady inward current was much smaller, suggesting an adaptation to the absence of AChE.


Asunto(s)
Interneuronas/fisiología , Neuronas Motoras/fisiología , Receptores Nicotínicos/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/metabolismo , Acetilcolina/fisiología , Acetilcolinesterasa/genética , Acetilcolinesterasa/farmacología , Animales , Inhibidores de la Colinesterasa/farmacología , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/fisiología , Interneuronas/efectos de los fármacos , Ácido Meclofenámico/farmacología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Neostigmina/farmacología , Proteínas del Tejido Nervioso/genética , Transmisión Sináptica/efectos de los fármacos
7.
J Neurochem ; 122(5): 1065-80, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22747514

RESUMEN

Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.


Asunto(s)
Acetilcolinesterasa/deficiencia , Adaptación Fisiológica/genética , Encéfalo/enzimología , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Animales , Animales Recién Nacidos , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/genética , Encéfalo/anatomía & histología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Bungarotoxinas/farmacocinética , Colina/metabolismo , Colinérgicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Colágeno/deficiencia , Dihidro-beta-Eritroidina/farmacología , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Marcha/efectos de los fármacos , Marcha/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Microdiálisis , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Antagonistas Muscarínicos/farmacocinética , Proteínas Musculares/deficiencia , Uñas Encarnadas , Neostigmina/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Pirenzepina/análogos & derivados , Pirenzepina/farmacocinética , Unión Proteica/efectos de los fármacos , Piridinas/farmacocinética , Radioisótopos/farmacocinética , Receptores Muscarínicos/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Escopolamina/farmacología , Médula Espinal/citología , Estadísticas no Paramétricas , Tritio/farmacocinética
8.
J Neurosci ; 28(52): 14121-31, 2008 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19109494

RESUMEN

Renshaw cells (RCs) are spinal interneurons excited by collaterals of the axons of motoneurons (MNs). They respond to a single motoneuronal volley by a surprisingly long (tens of milliseconds) train of action potentials. We have analyzed this synaptic response in spinal cord slices of neonatal mice in light of recent observations suggesting that the MN axons release both acetylcholine and glutamate. We found that the RC synaptic current involves four components of similar amplitudes mediated by two nicotinic receptors (nAChRs, tentatively identified as alpha(7) homomers and alpha(4)beta(2) heteromers) and two glutamate receptors (AMPARs and NMDARs). The decay time constants of the four components cover a wide range: from 3.6 +/- 2.2 ms (alpha(7) nAChRs) to 54.6 +/- 19.5 ms (NMDARs, at -45 mV). The RC discharge can be separated into an initial doublet of high-frequency action potentials followed by later spikes with a variable latency and longer interspike intervals. The initial doublet involves the four ionotropic receptors as well as endogenous voltage-dependent conductances. The late discharge depends on NMDARs, but these receptors must be primed by the initial depolarization. The activation of the NMDARs is prolonged by the fact that their slow deactivation is further slowed by depolarization. The formation of the initial doublet is favored by hyperpolarization, whereas the late discharge is favored by depolarization. This suggests that in physiological conditions the pattern of discharge of the RC in response to a MN input may alternate between a phasic and a tonic response.


Asunto(s)
Interneuronas/fisiología , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Receptores de Glutamato/fisiología , Receptores Nicotínicos/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp/métodos , Médula Espinal/citología , Sinapsis/efectos de los fármacos
9.
Neural Comput ; 20(7): 1732-75, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18254702

RESUMEN

Dendrites may exhibit many types of electrical and morphological heterogeneities at the scale of a few micrometers. Models of neurons, even so-called detailed models, rarely consider such heterogeneities. Small-scale fluctuations in the membrane conductances and the diameter of dendrites are generally disregarded and spines merely incorporated into the dendritic shaft. Using the two-scales method known as homogenization, we establish explicit expressions for the small-scale fluctuations of the membrane voltage, and we derive the cable equation satisfied by the voltage when these fluctuations are averaged out. This allows us to rigorously establish under what conditions a heterogeneous dendrite can be approximated by a homogeneous cable. We consider different distributions of synapses, orderly or random, on a passive dendrite, and we investigate when replacing excitatory and inhibitory synaptic conductances by their local averages leads to a small error in the voltage. This indicates in which regimes the approximations made in compartmental models are justified. We extend these results to active membranes endowed with voltage-dependent conductances or NMDA receptors. Then we examine under which conditions a spiny dendrite behaves as a smooth dendrite. We discover a new regime where this holds true, namely, when the conductance of the spine neck is small compared to the conductance of the synapses impinging on the spine head. Spines can then be taken into account by an effective excitatory current, the capacitance of the dendrite remaining unchanged. In this regime, the synaptic current transmitted from a spine to the dendritic shaft is strongly attenuated by the weak coupling conductance, but the total current they deliver can be quite substantial. These results suggest that pedunculated spines and stubby spines might play complementary roles in synaptic integration. Finally, we analyze how varicosities affect voltage diffusion in dendrites and discuss their impact on the spatiotemporal integration of synaptic input.


Asunto(s)
Dendritas/fisiología , Modelos Neurológicos , Algoritmos , Animales , Espinas Dendríticas/fisiología , Capacidad Eléctrica , Conductividad Eléctrica , Humanos , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología
10.
Sci Rep ; 7(1): 4037, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642492

RESUMEN

In neonatal mice motoneurons excite Renshaw cells by releasing both acetylcholine (ACh) and glutamate. These two neurotransmitters activate two types of nicotinic receptors (nAChRs) (the homomeric α7 receptors and the heteromeric α*ß* receptors) as well as the two types of glutamate receptors (GluRs) (AMPARs and NMDARs). Using paired recordings, we confirm that a single motoneuron can release both transmitters on a single post-synaptic Renshaw cell. We then show that co-transmission is preserved in adult animals. Kinetic analysis of miniature EPSCs revealed quantal release of mixed events associating AMPARs and NMDARs, as well as α7 and α*ß* nAChRs, but no evidence was found for mEPSCs associating nAChRs with GluRs. Bayesian Quantal Analysis (BQA) of evoked EPSCs showed that the number of functional contacts on a single Renshaw cell is more than halved when the nicotinic receptors are blocked, confirming that the two neurotransmitters systems are segregated. Our observations can be explained if ACh and glutamate are released from common vesicles onto spatially segregated post-synaptic receptors clusters, but a pre-synaptic segregation of cholinergic and glutamatergic release sites is also possible.


Asunto(s)
Acetilcolina/metabolismo , Ácido Glutámico/metabolismo , Neuronas Motoras/fisiología , Células de Renshaw/fisiología , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Ratones , Receptores de Glutamato/metabolismo , Receptores Nicotínicos/metabolismo
11.
J Physiol Paris ; 99(2-3): 211-20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16448809

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Médula Espinal/patología , Superóxido Dismutasa/genética , Sinapsis/patología , Sinapsis/fisiología
12.
J Vis Exp ; (116)2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27768090

RESUMEN

Electrophysiological recordings from spinal cord slices have proven to be a valuable technique to investigate a wide range of questions, from cellular to network properties. We show how to prepare viable oblique slices of the spinal cord of young mice (P2 - P11). In this preparation, the motoneurons retain their axons coming out from the ventral roots of the spinal cord. Stimulation of these axons elicits back-propagating action potentials invading the motoneuron somas and exciting the motoneuron collaterals within the spinal cord. Recording of antidromic action potentials is an immediate, definitive and elegant way to characterize motoneuron identity, which surpasses other identification methods. Furthermore, stimulating the motoneuron collaterals is a simple and reliable way to excite the collateral targets of the motoneurons within the spinal cord, such as other motoneurons or Renshaw cells. In this protocol, we present antidromic recordings from the motoneuron somas as well as Renshaw cell excitation, resulting from ventral root stimulation.


Asunto(s)
Estimulación Eléctrica , Raíces Nerviosas Espinales , Potenciales de Acción , Animales , Ratones , Neuronas Motoras , Médula Espinal
13.
Elife ; 32014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25313866

RESUMEN

In amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development has long been hypothesized to contribute to neural degeneration in the adult. Here, we performed a critical test of this hypothesis by recording from identified F- and S-type motoneurons in the superoxide dismutase-1 mutant G93A (mSOD1), a mouse model of ALS at a neonatal age when early pathophysiological changes are observed. Contrary to the standard hypothesis, excitability of F-type motoneurons was unchanged in the mutant mice. Surprisingly, the S-type motoneurons of mSDO1 mice did display intrinsic hyperexcitability (lower rheobase, hyperpolarized spiking threshold). As S-type motoneurons are resistant in ALS, we conclude that early intrinsic hyperexcitability does not contribute to motoneuron degeneration.


Asunto(s)
Potenciales de Acción/fisiología , Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras/patología , Degeneración Nerviosa/fisiopatología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas de Unión al ADN , Dendritas/metabolismo , Modelos Animales de Enfermedad , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Transgénicos , Neuronas Motoras/fisiología , Mutación/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Estrógenos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
14.
Biochem Pharmacol ; 86(8): 1114-21, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23811311

RESUMEN

In Renshaw cells (RCs) of newborn mice, activation of motoneurons elicits a four-component synaptic current (EPSC) mediated by two glutamate receptors and two nicotinic receptors (nAChRs). We have analyzed the nicotinic component of the EPSC which is blocked by dihydro-beta-erythroidine (DHßE) with the dual objective of identifying the nAChR subunits involved and of understanding the kinetics of the response. The sensitivity to DHßE of the peak of the EPSC was differentially affected by genetic deletion of three specific nAChR subunits: α2, ß2 and ß4. The comparison of these effects with published findings on recombinant receptors suggests that, in WT mice, two heteromeric assemblies, α4ß2 and α2ß4, coexist in variable proportions in a given RC. Some results seem to require, however, the involvement of an additional subunit. The effects of DHßE on the decay of the EPSCs were compared in WT mice and in PRiMA(-/-) mice, in which the decay is prolonged by the absence of central acetylcholinesterase. In PRiMA(-/-) mice DHßE shortened the decay of the EPSC. In WT mice it did not alter the decay but reduced the amplitude of both components of the EPSC. The results can be interpreted by assuming that the nAChRs exist in two stoichiometries, subsynaptic "low sensitivity" nAChRs and extrasynaptic "high sensitivity" nAChRs activated by spillover.


Asunto(s)
Subunidades de Proteína/fisiología , Receptores Nicotínicos/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Dihidro-beta-Eritroidina/farmacología , Regulación de la Expresión Génica/fisiología , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Nicotínicos/genética
15.
Eur J Neurosci ; 25(2): 451-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17284186

RESUMEN

Amyotrophic lateral sclerosis is a lethal, adult-onset disease characterized by progressive degeneration of motoneurons. Recent data have suggested that the disease could be linked to abnormal development of the motor nervous system. Therefore, we investigated the electrical properties of lumbar motoneurons in an in-vitro neonatal spinal cord preparation isolated from SOD1(G85R) mice, which is a transgenic model of amyotrophic lateral sclerosis. The study was performed on young animals at the beginning of their second week, between postnatal days 6 and 10. Measurements of resting membrane potential and action potential characteristics of motoneurons were similar in wild-type and SOD1(G85R) mice. However, the input resistance of motoneurons from transgenic mice was significantly lower than that of wild-type animals, whereas their membrane capacitance was increased, strongly suggesting larger SOD1(G85R) motoneurons. Furthermore, the slope of the frequency-intensity curve was steeper in motoneurons from wild-type pups. Interestingly, the input resistance as well as the slope of the frequency-intensity curves of other spinal neurons did not show such differences. Finally, the amplitude of dorsal root-evoked potentials following high-intensity stimulation was significantly smaller in SOD1(G85R) motoneurons. The superoxide dismutase 1 mutation thus induces specific alterations of the functional properties of motoneurons early in development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Neuronas Motoras/fisiología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Glicinérgicos/farmacología , Región Lumbosacra , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/efectos de la radiación , Técnicas de Placa-Clamp , Estricnina/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA