Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(4): 3175-3181, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36621958

RESUMEN

Two-dimensional (2D) all-inorganic double perovskite materials have attracted great interest owing to their unique photoelectric characteristics, such as high quantum efficiency and relative stability. However, few studies have been conducted on the 2D all-inorganic double perovskite Cs3AgBiBr7, and its photoelectric properties are unclear. In this study, we present a detailed investigation of the band structure, optical absorption spectrum, carrier mobility and exciton binding energy of the double perovskite Cs3AgBiBr7 based on the first-principles. The results show that this system has an indirect band gap and low carrier mobility, high exciton binding energy (2041.38 meV) and significant light absorption in the UV region. We also find that the material may be a potential exciton insulation candidate owing to the exciton binding energy beyond the band gap. Our calculated results also show that low dimensional perovskite Cs3AgBiBr7 is more suitable for luminescence than a photovoltaic device. We hope our theoretical results will inspire and promote the experimental exploration of 2D all-inorganic double perovskite materials for photoelectric applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA