Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 227, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268890

RESUMEN

BACKGROUND: Entity normalization is an important information extraction task which has recently gained attention, particularly in the clinical/biomedical and life science domains. On several datasets, state-of-the-art methods perform rather well on popular benchmarks. Yet, we argue that the task is far from resolved. RESULTS: We have selected two gold standard corpora and two state-of-the-art methods to highlight some evaluation biases. We present non-exhaustive initial findings on the existence of evaluation problems of the entity normalization task. CONCLUSIONS: Our analysis suggests better evaluation practices to support the methodological research in this field.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Almacenamiento y Recuperación de la Información , Proyectos de Investigación , Sesgo , Procesamiento de Lenguaje Natural
2.
Cortex ; 145: 160-168, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34731686

RESUMEN

INTRODUCTION: Positron emission tomography (PET) amyloid imaging has become an important part of the diagnostic workup for patients with primary progressive aphasia (PPA) and uncertain underlying pathology. Here, we employ a semi-automated analysis of connected speech (CS) with a twofold objective. First, to determine if quantitative CS features can help select primary progressive aphasia (PPA) patients with a higher probability of a positive PET amyloid imaging result. Second, to examine the relevant group differences from a clinical perspective. METHODS: 117 CS samples from a well-characterised cohort of PPA patients who underwent PET amyloid imaging were collected. Expert consensus established PET amyloid status for each patient, and 40% of the sample was amyloid positive. RESULTS: Leave-one-out cross-validation yields 77% classification accuracy (sensitivity: 74%, specificity: 79%). DISCUSSION: Our results confirm the potential of CS analysis as a screening tool. Discriminant CS features from lexical, syntactic, pragmatic, and semantic domains are discussed.


Asunto(s)
Afasia Progresiva Primaria , Habla , Amiloide/metabolismo , Afasia Progresiva Primaria/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA