Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 30(8): 2680-2692, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35490295

RESUMEN

Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6ß4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.


Asunto(s)
Autoantígenos , Epidermólisis Ampollosa de la Unión , Epidermólisis Ampollosa , Colágenos no Fibrilares , Autoantígenos/genética , Desoxirribonucleasa I/genética , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/terapia , Homocigoto , Humanos , Laminina/genética , Mutación , Colágenos no Fibrilares/genética , Eliminación de Secuencia , Colágeno Tipo XVII
2.
Gene Ther ; 29(3-4): 157-170, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34363036

RESUMEN

Recent advances in molecular biology have led to the CRISPR revolution, but the lack of an efficient and safe delivery system into cells and tissues continues to hinder clinical translation of CRISPR approaches. Polymeric vectors offer an attractive alternative to viruses as delivery vectors due to their large packaging capacity and safety profile. In this paper, we have demonstrated the potential use of a highly branched poly(ß-amino ester) polymer, HPAE-EB, to enable genomic editing via CRISPRCas9-targeted genomic excision of exon 80 in the COL7A1 gene, through a dual-guide RNA sequence system. The biophysical properties of HPAE-EB were screened in a human embryonic 293 cell line (HEK293), to elucidate optimal conditions for efficient and cytocompatible delivery of a DNA construct encoding Cas9 along with two RNA guides, obtaining 15-20% target genomic excision. When translated to human recessive dystrophic epidermolysis bullosa (RDEB) keratinocytes, transfection efficiency and targeted genomic excision dropped. However, upon delivery of CRISPR-Cas9 as a ribonucleoprotein complex, targeted genomic deletion of exon 80 was increased to over 40%. Our study provides renewed perspective for the further development of polymer delivery systems for application in the gene editing field in general, and specifically for the treatment of RDEB.


Asunto(s)
Sistemas CRISPR-Cas , Epidermólisis Ampollosa Distrófica , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/metabolismo , Epidermólisis Ampollosa Distrófica/terapia , Edición Génica , Células HEK293 , Humanos , Polímeros/metabolismo
3.
Mol Ther ; 29(6): 2008-2018, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33609734

RESUMEN

Genome-editing technologies that enable the introduction of precise changes in DNA sequences have the potential to lead to a new class of treatments for genetic diseases. Epidermolysis bullosa (EB) is a group of rare genetic disorders characterized by extreme skin fragility. The recessive dystrophic subtype of EB (RDEB), which has one of the most severe phenotypes, is caused by mutations in COL7A1. In this study, we report a gene-editing approach for ex vivo homology-directed repair (HDR)-based gene correction that uses the CRISPR-Cas9 system delivered as a ribonucleoprotein (RNP) complex in combination with donor DNA templates delivered by adeno-associated viral vectors (AAVs). We demonstrate sufficient mutation correction frequencies to achieve therapeutic benefit in primary RDEB keratinocytes containing different COL7A1 mutations as well as efficient HDR-mediated COL7A1 modification in healthy cord blood-derived CD34+ cells and mesenchymal stem cells (MSCs). These results are a proof of concept for HDR-mediated gene correction in different cell types with therapeutic potential for RDEB.


Asunto(s)
Epidermólisis Ampollosa Distrófica/genética , Edición Génica/métodos , Genes Recesivos , Terapia Genética/métodos , Mutación , Reparación del ADN por Recombinación , Sistemas CRISPR-Cas , Línea Celular , Colágeno Tipo VII/genética , Dependovirus/genética , Epidermólisis Ampollosa Distrófica/terapia , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Queratinocitos/metabolismo
4.
Mol Ther ; 27(5): 986-998, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30930113

RESUMEN

Gene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations in COL7A1 causing recessive dystrophic epidermolysis bullosa are amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeted deletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic. In this study, using a dual single-guide RNA (sgRNA)-guided Cas9 nuclease delivered as a ribonucleoprotein complex through electroporation, we have achieved very efficient targeted deletion of COL7A1 exon 80 in recessive dystrophic epidermolysis bullosa (RDEB) patient keratinocytes carrying a highly prevalent frameshift mutation. This ex vivo non-viral approach rendered a large proportion of corrected cells producing a functional collagen VII variant. The effective targeting of the epidermal stem cell population enabled long-term regeneration of a properly adhesive skin upon grafting onto immunodeficient mice. A safety assessment by next-generation sequencing (NGS) analysis of potential off-target sites did not reveal any unintended nuclease activity. Our strategy could potentially be extended to a large number of COL7A1 mutation-bearing exons within the long collagenous domain of this gene, opening the way to precision medicine for RDEB.


Asunto(s)
Sistemas CRISPR-Cas/genética , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Edición Génica , Animales , Modelos Animales de Enfermedad , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Exones/genética , Mutación del Sistema de Lectura/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Queratinocitos/metabolismo , Ratones , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/uso terapéutico
5.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178458

RESUMEN

The role of stroma is fundamental in the development and behavior of epithelial tumors. In this regard, limited growth of squamous cell carcinomas (SCC) or cell-lines derived from them has been achieved in immunodeficient mice. Moreover, lack of faithful recapitulation of the original human neoplasia complexity is often observed in xenografted tumors. Here, we used tissue engineering techniques to recreate a humanized tumor stroma for SCCs grafted in host mice, by combining CAF (cancer associated fibroblasts)-like cells with a biocompatible scaffold. The stroma was either co-injected with epithelial cell lines derived from aggressive SCC or implanted 15 days before the injection of the tumoral cells, to allow its vascularization and maturation. None of the mice injected with the cell lines without stroma were able to develop a SCC. In contrast, tumors were able to grow when SCC cells were injected into previously established humanized stroma. Histologically, all of the regenerated tumors were moderately differentiated SCC with a well-developed stroma, resembling that found in the original human neoplasm. Persistence of human stromal cells was also confirmed by immunohistochemistry. In summary, we provide a proof of concept that humanized tumor stroma, generated by tissue engineering, can facilitate the development of epithelial tumors in immunodeficient mice.


Asunto(s)
Carcinoma de Células Escamosas/patología , Xenoinjertos/patología , Trasplante de Neoplasias/patología , Células del Estroma/patología , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Línea Celular Tumoral , Células Epiteliales/patología , Femenino , Fibroblastos/patología , Humanos , Ratones , Neovascularización Patológica/patología , Ingeniería de Tejidos/métodos , Trasplante Heterólogo/métodos
6.
Mol Ther ; 26(11): 2592-2603, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30122422

RESUMEN

Deficiency of basement membrane heterotrimeric laminin 332 component, coded by LAMA3, LAMB3, and LAMC2 genes, causes junctional epidermolysis bullosa (JEB), a severe skin adhesion defect. Herein, we report the first application of CRISPR/Cas9-mediated homology direct repair (HDR) to in situ restore LAMB3 expression in JEB keratinocytes in vitro and in immunodeficient mice transplanted with genetically corrected skin equivalents. We packaged an adenovector carrying Cas9/guide RNA (gRNA) tailored to the intron 2 of LAMB3 gene and an integration defective lentiviral vector bearing a promoterless quasi-complete LAMB3 cDNA downstream a splice acceptor site and flanked by homology arms. Upon genuine HDR, we exploited the in vitro adhesion advantage of laminin 332 production to positively select LAMB3-expressing keratinocytes. HDR and restored laminin 332 expression were evaluated at single-cell level. Notably, monoallelic-targeted integration of LAMB3 cDNA was sufficient to in vitro recapitulate the adhesive property, the colony formation typical of normal keratinocytes, as well as their cell growth. Grafting of genetically corrected skin equivalents onto immunodeficient mice showed a completely restored dermal-epidermal junction. This study provides evidence for efficient CRISPR/Cas9-mediated in situ restoration of LAMB3 expression, paving the way for ex vivo clinical application of this strategy to laminin 332 deficiency.


Asunto(s)
Sistemas CRISPR-Cas/genética , Moléculas de Adhesión Celular/genética , Epidermólisis Ampollosa de la Unión/terapia , Terapia Genética , Animales , Membrana Basal/patología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/deficiencia , Reparación del ADN/genética , ADN Complementario/genética , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/patología , Regulación de la Expresión Génica , Humanos , Intrones/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Laminina/genética , Lentivirus/genética , Ratones , Mutación , Edición de ARN/genética , Kalinina
7.
Nucleic Acids Res ; 45(17): 10259-10269, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973459

RESUMEN

Functional impairment or complete loss of type VII collagen, caused by mutations within COL7A1, lead to the severe recessive form of the skin blistering disease dystrophic epidermolysis bullosa (RDEB). Here, we successfully demonstrate RNA trans-splicing as an auspicious repair option for mutations located in a wide range of exons by fully converting an RDEB phenotype in an ex vivo pre-clinical mouse model based on xenotransplantation. Via a self-inactivating (SIN) lentiviral vector a 3' RNA trans-splicing molecule, capable of replacing COL7A1 exons 65-118, was delivered into type VII collagen deficient patient keratinocytes, carrying a homozygous mutation in exon 80 (c.6527insC). Following vector integration, protein analysis of an isolated corrected single cell clone showed secretion of the corrected type VII collagen at similar levels compared to normal keratinocytes. To confirm full phenotypic and long-term correction in vivo, patches of skin equivalents expanded from the corrected cell clone were grafted onto immunodeficient mice. Immunolabelling of 12 weeks old skin specimens showed strong expression of human type VII collagen restricted to the basement membrane zone. We demonstrate that the RNA trans-splicing technology combined with a SIN lentiviral vector is suitable for an ex vivo molecular therapy approach and thus adaptable for clinical application.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , ARN/uso terapéutico , Trans-Empalme , Animales , Membrana Basal/metabolismo , Células Cultivadas , Colágeno Tipo VII/deficiencia , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Xenoinjertos , Humanos , Queratinocitos/metabolismo , Queratinocitos/trasplante , Lentivirus/genética , Ratones , Modelos Animales , ARN/administración & dosificación , ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Trasplante de Piel , Transgenes
8.
Sensors (Basel) ; 19(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366169

RESUMEN

Diabetes is a very complex condition affecting millions of people around the world. Its occurrence, always accompanied by sustained hyperglycemia, leads to many medical complications that can be greatly mitigated when the disease is treated in its earliest stage. In this paper, a novel sensing approach for the early non-invasive detection and monitoring of sustained hyperglycemia is presented. The sensing principle is based on millimeter-wave transmission spectroscopy through the skin and subsequent statistical analysis of the amplitude data. A classifier based on functional principal components for sustained hyperglycemia prediction was validated on a sample of twelve mice, correctly classifying the condition in diabetic mice. Using the same classifier, sixteen mice with drug-induced diabetes were studied for two weeks. The proposed sensing approach was capable of assessing the glycemic states at different stages of induced diabetes, providing a clear transition from normoglycemia to hyperglycemia typically associated with diabetes. This is believed to be the first presentation of such evolution studies using non-invasive sensing. The results obtained indicate that gradual glycemic changes associated with diabetes can be accurately detected by non-invasively sensing the metabolism using a millimeter-wave spectral sensor, with an observed temporal resolution of around four days. This unprecedented detection speed and its non-invasive character could open new opportunities for the continuous control and monitoring of diabetics and the evaluation of response to treatments (including new therapies), enabling a much more appropriate control of the condition.


Asunto(s)
Glucemia/aislamiento & purificación , Diabetes Mellitus Experimental/diagnóstico , Hiperglucemia/diagnóstico , Análisis Espectral/métodos , Animales , Diabetes Mellitus Experimental/metabolismo , Humanos , Hiperglucemia/metabolismo , Ratones
9.
Mol Ther ; 25(11): 2573-2584, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28800953

RESUMEN

Designer nucleases allow specific and precise genomic modifications and represent versatile molecular tools for the correction of disease-associated mutations. In this study, we have exploited an ex vivo CRISPR/Cas9-mediated homology-directed repair approach for the correction of a frequent inherited mutation in exon 80 of COL7A1, which impairs type VII collagen expression, causing the severe blistering skin disease recessive dystrophic epidermolysis bullosa. Upon CRISPR/Cas9 treatment of patient-derived keratinocytes, using either the wild-type Cas9 or D10A nickase, corrected single-cell clones expressed and secreted similar levels of type VII collagen as control keratinocytes. Transplantation of skin equivalents grown from corrected keratinocytes onto immunodeficient mice showed phenotypic reversion with normal localization of type VII collagen at the basement membrane zone, compared with uncorrected keratinocytes, as well as fully stratified and differentiated skin layers without indication of blister development. Next-generation sequencing revealed on-target efficiency of up to 30%, whereas nuclease-mediated off-target site modifications at predicted genomic loci were not detected. These data demonstrate the potential of the CRISPR/Cas9 technology as a possible ex vivo treatment option for genetic skin diseases in the future.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Edición Génica/métodos , Queratinocitos/metabolismo , Terapia Molecular Dirigida , Animales , Secuencia de Bases , Colágeno Tipo VII/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/metabolismo , Epidermólisis Ampollosa Distrófica/patología , Exones , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Queratinocitos/patología , Queratinocitos/trasplante , Ratones , Ratones Desnudos , Mutación , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Trasplante Heterólogo , Resultado del Tratamiento
10.
Am J Hum Genet ; 93(4): 620-30, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24055110

RESUMEN

Transglutaminase-1 (TG1)-deficient autosomal-recessive congenital ichthyosis (ARCI) is a rare and severe genetic skin disease caused by mutations in TGM1. It is characterized by collodion babies at birth, dramatically increased transepidermal water loss (TEWL), and lifelong pronounced scaling. The disease has a tremendous burden, including the problem of stigmatization. Currently, no therapy targeting the molecular cause is available, and the therapeutic situation is deplorable. In this study, we developed the basis for a causative therapy aiming at the delivery of the enzyme to the inner site of the keratinocytes' plasma membrane. We prepared sterically stabilized liposomes with encapsulated recombinant human TG1 (rhTG1) and equipped with a highly cationic lipopeptide vector to mediate cellular uptake. The liposomes overcame the problems of insufficient cutaneous delivery and membrane penetration and provided excellent availability and activity of rhTG1 in primary keratinocytes. To demonstrate the general feasibility of this therapeutic approach in a humanized context, we used a skin-humanized mouse model. Treatment with rhTG1 liposomes resulted in considerable improvement of the ichthyosis phenotype and in normalization of the regenerated ARCI skin: in situ monitoring showed a restoration of TG1 activity, and cholesterol clefts vanished ultrastructurally. Measurement of TEWL revealed a restoration of epidermal barrier function. We regard this aspect as a major advance over available nonspecific approaches making use of, for example, retinoid creams. We conclude that this topical approach is a promising strategy for restoring epidermal integrity and barrier function and provides a causal cure for individuals with TG1 deficiency.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Trasplante de Piel/métodos , Piel/efectos de los fármacos , Transglutaminasas/deficiencia , Transglutaminasas/metabolismo , Administración Tópica , Animales , Membrana Celular/metabolismo , Células Cultivadas , Química Farmacéutica/métodos , Modelos Animales de Enfermedad , Humanos , Ictiosis/metabolismo , Ictiosis/terapia , Queratinocitos/metabolismo , Liposomas/administración & dosificación , Ratones , Ratones Desnudos , Fenotipo , Proteínas Recombinantes/metabolismo , Células Sf9
11.
Mol Ther ; 22(5): 929-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24468915

RESUMEN

Autologous human keratinocytes (HK) forming sheet grafts are approved as skin substitutes. Genetic engineering of HK represents a promising technique to improve engraftment and survival of transplants. Although efficacious in keratinocyte-directed gene transfer, retro-/lentiviral vectors may raise safety concerns when applied in regenerative medicine. We therefore optimized adeno-associated viral (AAV) vectors of the serotype 2, characterized by an excellent safety profile, but lacking natural tropism for HK, through capsid engineering. Peptides, selected by AAV peptide display, engaged novel receptors that increased cell entry efficiency by up to 2,500-fold. The novel targeting vectors transduced HK with high efficiency and a remarkable specificity even in mixed cultures of HK and feeder cells. Moreover, differentiated keratinocytes in organotypic airlifted three-dimensional cultures were transduced following topical vector application. By exploiting comparative gene analysis we further succeeded in identifying αvß8 integrin as a target receptor thus solving a major challenge of directed evolution approaches and describing a promising candidate receptor for cutaneous gene therapy.


Asunto(s)
Ingeniería Genética , Terapia Genética , Péptidos/genética , Anomalías Cutáneas/terapia , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos , Humanos , Integrina alfa5/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Péptidos/uso terapéutico , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Transducción Genética , Tropismo
12.
Mol Ther ; 21(9): 1695-704, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23760447

RESUMEN

Preclinical and clinical studies showed that autologous transplantation of epidermis derived from genetically modified epithelial stem cells (EpSCs) leads to long-term correction of inherited skin adhesion defects. These studies were based on potentially genotoxic retroviral vectors. We developed an alternative gene transfer strategy aimed at targeting a "safe harbor" locus, the adeno-associated virus integration site 1 (AAVS1), by zinc-finger nuclease (ZFN)-induced homologous recombination (HR). Delivery of AAVS1-specific ZFNs and a GFP-expressing HR cassette by integration-defective lentiviral (LV) vectors (IDLVs) or adenoviral (Ad) vectors resulted in targeted gene addition with an efficiency of > 20% in a human keratinocyte cell line, > 10% in immortalized keratinocytes, and < 1% in primary keratinocytes. Deep sequencing of the AAVS1 locus showed that ZFN-induced double-strand breaks are mostly repaired by nonhomologous end joining (NHEJ) in primary cells, indicating that poor induction of the HR-dependent DNA repair pathway may be a significant limitation for targeted gene integration. Skin equivalents derived from unselected keratinocyte cultures coinfected with a GFP-IDLV and a ZFN-Ad vector were grafted onto immunodeficient mice. GFP-positive clones were observed in all grafts up to 18 weeks post-transplantation. By histological and molecular analysis, we were able to demonstrate highly efficient targeting of the AAVS1 locus in human repopulating EpSCs.


Asunto(s)
Dependovirus/genética , Endonucleasas/genética , Marcación de Gen , Recombinación Homóloga , Queratinocitos/metabolismo , Células Madre/metabolismo , Integración Viral , Animales , Línea Celular , Trasplante de Células , Células Cultivadas , Dependovirus/metabolismo , Endonucleasas/metabolismo , Vectores Genéticos , Humanos , Ratones , Transducción Genética , Dedos de Zinc
13.
Cleft Palate Craniofac J ; 51(2): 246-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23879858

RESUMEN

Many types of soft tissue grafts have been used for the reconstruction of oral mucosal defects. The best results are achieved with mucosal grafts; however, when large areas must be grafted, sufficient donor tissue is not available. Tissue engineering represents an alternative method to obtain sufficient autologous tissue for reconstructing oral wounds. Herein we present a pediatric patient with hemifacial microsomia and congenital ankyloglossia requiring multiple surgical interventions, and in which an autologous full-thickness tissue-engineered oral mucosa was used for successful oral reconstruction. Our study demonstrates that even under challenging conditions, robust tissue-engineered products, such as the fibrin-based oral mucosa described here, can achieve successful tissue regeneration.


Asunto(s)
Anquiloglosia/cirugía , Síndrome de Goldenhar/cirugía , Mucosa Bucal/cirugía , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/métodos , Fibroblastos/fisiología , Humanos , Lactante , Queratinocitos/fisiología , Ferulas Oclusales
14.
Sci Rep ; 14(1): 18969, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152155

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age. A frequent class of mutations in RDEB is premature termination codons (PTC), which appear in homozygosity or compound heterozygosity with other mutations. RDEB has no cure and current therapies are mostly palliative. Using patient-derived keratinocytes and a library of 8273 small molecules and 20,160 microbial extracts evaluated in a phenotypic screening interrogating C7 levels, we identified three active chemical series. Two of these series had PTC readthrough activity, and one upregulated C7 mRNA, showing synergistic activity when combined with the reference readthrough molecule gentamicin. These compounds represent novel potential small molecule-based systemic strategies that could complement topical-based treatments for RDEB.


Asunto(s)
Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/tratamiento farmacológico , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Humanos , Regulación hacia Arriba/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Codón sin Sentido , Gentamicinas/farmacología
15.
Exp Dermatol ; 22(3): 195-201, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23489422

RESUMEN

Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Fibroblastos/fisiología , Regeneración/fisiología , Fenómenos Fisiológicos de la Piel , Cicatrización de Heridas/fisiología , Animales , Bioingeniería/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Femenino , Fibroblastos/citología , Humanos , Ratones , Ratones Desnudos , Estreptozocina/efectos adversos , Factores de Tiempo , Andamios del Tejido , Trasplante Heterólogo
16.
Exp Dermatol ; 22(9): 601-3, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23947675

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by deficiency of type VII collagen due to COL7A1 mutations such as c.6527insC, recurrently found in the Spanish RDEB population. Assessment of clonal correction-based therapeutic approaches for RDEB requires large expansions of cells, exceeding the replication capacity of human primary keratinocytes. Thus, immortalized RDEB cells with enhanced proliferative abilities would be valuable. Using either the SV40 large T antigen or papillomavirus HPV16-derived E6-E7 proteins, we immortalized and cloned RDEB keratinocytes carrying the c.6527insC mutation. Clones exhibited high proliferative and colony-forming features. Cytogenetic analysis revealed important differences between T antigen-driven and E6-E7-driven immortalization. Immortalized cells responded to differentiation stimuli and were competent for epidermal regeneration and recapitulation of the blistering RDEB phenotype in vivo. These features make these cell lines useful to test novel therapeutic approaches including those aimed at editing mutant COL7A1.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Queratinocitos/metabolismo , Mutación , Animales , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Epidermólisis Ampollosa Distrófica/patología , Terapia Genética , Xenoinjertos , Homocigoto , Humanos , Queratinocitos/trasplante , Ratones , Modelos Genéticos , Regeneración
17.
Mol Ther ; 20(4): 798-807, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22068429

RESUMEN

Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>10(40) cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients.


Asunto(s)
Piel/citología , Piel/metabolismo , Células Madre/citología , Células Madre/metabolismo , Xerodermia Pigmentosa/terapia , Southern Blotting , Western Blotting , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Citometría de Flujo , Terapia Genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Xerodermia Pigmentosa/metabolismo
18.
J Invest Dermatol ; 142(8): 2238-2248.e8, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34979109

RESUMEN

Chronic wounds represent a major health problem worldwide. Some of the available therapies based on recombinant proteins usually fail owing to the hostile environment found at the wound bed. Aptamers appear as an attractive alternative to recombinant factors owing in part to their stability, sensitivity, specificity, and low-cost production. In this study, the Cell-Systematic Evolution of Ligands by EXponential Enrichment technology was employed to generate aptamers that specifically recognize and modulate the function of the FPR2, a receptor expressed in a variety of cells involved in wound repair. Three aptamers were obtained that specifically bound to FPR2 stable transfectants generated in HaCaT cells. The targeted aptamers were shown to act as FPR2 agonists in different in vitro functional assays, including wound healing assays, and elicited a similar pattern of response to that obtained with other known FPR2 peptide agonists, such as the human LL37 cathelicidin. We have also obtained in vivo evidence for the prohealing activities of one of these FPR2 aptamers in a skin-humanized mouse model developed by us, previously shown to accurately recreate the main phases of physiological human wound repair process. In conclusion, we provide evidence of the potential therapeutic value of FPR2 aptamers for cutaneous repair.


Asunto(s)
Aptámeros de Nucleótidos , Receptores de Formil Péptido , Animales , Humanos , Ligandos , Ratones , Receptores de Formil Péptido/agonistas , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/agonistas , Receptores de Lipoxina/genética , Receptores de Lipoxina/metabolismo , Cicatrización de Heridas
19.
Mol Ther Methods Clin Dev ; 27: 96-108, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36212909

RESUMEN

Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients' cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.

20.
JAMA Dermatol ; 158(4): 439-443, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234827

RESUMEN

IMPORTANCE: Epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) is an autosomal recessive disorder caused by pathogenic variants in PLEC1, which encodes plectin. It is characterized by mild mucocutaneous fragility and blistering and muscle weakness. Translational readthrough-inducing drugs, such as repurposed aminoglycoside antibiotics, may represent a valuable therapeutic alternative for untreatable rare diseases caused by nonsense variants. OBJECTIVE: To evaluate whether systemic gentamicin, at a dose of 7.5 mg/kg/d for 14 consecutive days, is clinically beneficial in a patient with EBS-MD. DESIGN, SETTING, AND PARTICIPANTS: A single patient in Madrid, Spain, received 2 treatment courses with gentamicin on July 2019 and February 2020 with a follow-up period of 120 and 150 days, respectively. RESULTS: In this case report of a woman in her 30s with EBS-MD, before gentamicin treatment, the patient had mucocutaneous involvement, skeletal and respiratory muscle weakness, and myalgia that negatively affected her quality of life. Outcomes were evaluated with extensive laboratory tests and clinical scales. No nephrotoxic or ototoxic effects were detected after intravenous gentamicin administration. Gentamicin treatment was followed by plectin expression in the skin for at least 5 months. Although minimal changes were noted in skeletal muscle function (as measured by the Hammersmith functional motor scale and its expanded version: 6/40 to 7/40 and from 10/66 to 11/66, respectively) and respiratory musculature (maximal inspiratory and expiratory pressures D0 vs D16, MIP: 2.86 vs 3.63 KPa and MEP: 2.93 vs 4.63 KPa), myalgia disappeared (VAS dropped from 6 to 0), and quality of life improved (EuroQoL-5D-3L pain and anxiety dropped from 2 to 1). CONCLUSIONS AND RELEVANCE: The findings of this single case report suggest that gentamicin treatment may help suppress PLEC1 premature termination codons and induce plectin expression in EBS-MD primary keratinocytes and skin. Our study suggests that gentamicin may play an important role in treating EBS-MD owing to nonsense variants.


Asunto(s)
Epidermólisis Ampollosa Simple , Distrofias Musculares , Epidermólisis Ampollosa Simple/complicaciones , Epidermólisis Ampollosa Simple/tratamiento farmacológico , Epidermólisis Ampollosa Simple/genética , Femenino , Gentamicinas/uso terapéutico , Humanos , Distrofias Musculares/complicaciones , Distrofias Musculares/diagnóstico , Distrofias Musculares/tratamiento farmacológico , Distrofia Muscular de Cinturas , Mialgia , Plectina/genética , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA