Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Dev ; 34(1-2): 1-3, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896687

RESUMEN

Programmed fork pausing is a complex process allowing cells to arrest replication forks at specific loci in a polar manner. Studies in budding yeast and other model organisms indicate that such replication fork barriers do not act as roadblocks passively impeding fork progression but rather elicit complex interactions between fork and barrier components. In this issue of Genes & Development, Shyian and colleagues (pp. 87-98) show that in budding yeast, the fork protection complex Tof1-Csm3 interacts physically with DNA topoisomerase I (Top1) at replication forks through the C-terminal domain of Tof1. Fork pausing at the ribosomal DNA (rDNA) replication fork barrier (RFB) is impaired in the absence of Top1 or in a tof1 mutant that does not bind Top1, but the function of Top1 can be partially compensated for by Top2. Together, these data indicate that topoisomerases play an unexpected role in the regulation of programmed fork pausing in Saccharomyces cerevisiae.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Unión al ADN
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047295

RESUMEN

Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.


Asunto(s)
Arabidopsis , Populus , Proteínas de Saccharomyces cerevisiae , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Ácido Aspártico/metabolismo , Histidina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Populus/genética , Populus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
PLoS Genet ; 12(12): e1006479, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27930670

RESUMEN

The Ku complex binds non-specifically to DNA breaks and ensures repair via NHEJ. However, Ku is also known to bind directly to telomeric DNA ends and its presence there is associated with telomere capping, but avoiding NHEJ. How the complex discriminates between a DNA break and a telomeric extremity remains unknown. Our results using a tagged Ku complex, or a chromosome end capturing method, in budding yeast show that yKu association with telomeres can occur at sites distant from the physical end, on sub-telomeric elements, as well as on interstitial telomeric repeats. Consistent with previous studies, our results also show that yKu associates with telomeres in two distinct and independent ways: either via protein-protein interactions between Yku80 and Sir4 or via direct DNA binding. Importantly, yKu associates with the new sites reported here via both modes. Therefore, in sir4Δ cells, telomere bound yKu molecules must have loaded from a DNA-end near the transition of non-telomeric to telomeric repeat sequences. Such ends may have been one sided DNA breaks that occur as a consequence of stalled replication forks on or near telomeric repeat DNA. Altogether, the results predict a new model for yKu function at telomeres that involves yKu binding at one-sided DNA breaks caused by replication stalling. On telomere proximal chromatin, this binding is not followed by initiation of non-homologous end-joining, but rather by break-induced replication or repeat elongation by telomerase. After repair, the yKu-distal portion of telomeres is bound by Rap1, which in turn reduces the potential for yKu to mediate NHEJ. These results thus propose a solution to a long-standing conundrum, namely how to accommodate the apparently conflicting functions of Ku on telomeres.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rap1/genética , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero , Proteínas de Unión a Telómeros/genética
4.
Int J Mol Sci ; 17(12)2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27941652

RESUMEN

Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.


Asunto(s)
Ácido Aspártico/metabolismo , Presión Osmótica , Populus/enzimología , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Aminoácidos/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Histidina Quinasa , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Populus/genética , Unión Proteica , Multimerización de Proteína , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
5.
Physiol Plant ; 149(2): 188-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23330606

RESUMEN

In poplar, we identified proteins homologous to yeast proteins involved in osmosensing multistep phosphorelay Sln1p-Ypd1p-Ssk1p. This finding led us to speculate that Populus cells could sense osmotic stress by a similar mechanism. This study focuses on first and second protagonists of this possible pathway: a histidine-aspartate kinase (HK1), putative osmosensor and histidine phosphotransfer proteins (HPt1 to 10), potential partners of this HK. Characterization of HK1 showed its ability to homodimerize in two-hybrid tests and to act as an osmosensor with a kinase activity in yeast, by functional complementation of sln1Δ sho1Δ strain. Moreover, in plant cells, plasma membrane localization of HK1 is shown. Further analysis on HPts allowed us to isolate seven new cDNAs, leading to a total of 10 different HPts identified in poplar. Interaction tests showed that almost all HPts can interact with HK1, but two of them exhibit stronger interactions, suggesting a preferential partnership in poplar. The importance of the phosphorylation status in these interactions has been investigated with two-hybrid tests carried out with mutated HK1 forms. Finally, in planta co-expression analysis of genes encoding these potential partners revealed that only three HPts are co-expressed with HK1 in different poplar organs. This result reinforces the hypothesis of a partnership between HK1 and these three preferential HPts in planta. Taken together, these results shed some light on proteins partnerships that could be involved in the osmosensing pathway in Populus.


Asunto(s)
Aspartato Quinasa/metabolismo , Histidina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Aspartato Quinasa/química , Aspartato Quinasa/genética , Western Blotting , Prueba de Complementación Genética , Histidina/genética , Histidina Quinasa , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Populus/genética , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
6.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980198

RESUMEN

The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET during droughts, especially for tree species. Morphological and immunocytochemical approaches were used to study the RET of black poplar (Populus nigra L.) seedlings grown in vitro under optimal conditions (on agar-gelled medium) or when polyethylene glycol-mediated (PEG6000-infused agar-gelled medium) was used to mimic drought conditions through osmotic stress. Under optimal conditions, the root cap released three populations of individual AC-DC morphotypes, with a very low proportion of spherical morphotypes, and equivalent proportions of intermediate and elongated morphotypes. Immunolabeling experiments using anti-glycan antibodies specific to cell wall polysaccharide and arabinogalactan protein (AGP) epitopes revealed the presence of homogalacturonan (HG), galactan chains of rhamnogalacturonan-I (RG-I), and AGPs in root AC-DC cell walls. The data also showed the presence of xylogalacturonan (XGA), xylan, AGPs, and low levels of arabinans in the mucilage. The findings also showed that under osmotic stress conditions, both the number of AC-DCs (spherical and intermediate morphotypes) and the total quantity of mucilage per root tip increased, whereas the mucilage was devoid of the epitopes associated with the polysaccharides RG-I, XGA, xylan, and AGPs. Osmotic stress also led to reduced root growth and increased root expression of the P5CS2 gene, which is involved in proline biosynthesis and cellular osmolarity maintenance (or preservation) in aerial parts. Together, our findings show that the RET is a dynamic structure that undergoes pronounced structural and molecular remodeling, which might contribute to the survival of the root tip under osmotic conditions.


Asunto(s)
Trampas Extracelulares , Populus , Populus/genética , Xilanos/metabolismo , Presión Osmótica , Agar , Trampas Extracelulares/metabolismo , Polisacáridos/metabolismo , Epítopos
7.
Plants (Basel) ; 8(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835814

RESUMEN

We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA