RESUMEN
The housekeeping sarco(endo)plasmic reticulum Ca(2+) ATPase SERCA2b transports Ca(2+) across the endoplasmic reticulum membrane maintaining a vital Ca(2+) gradient. Compared with the muscle-specific isoforms SERCA2a and SERCA1a, SERCA2b houses an 11th transmembrane segment (TM11) and a short luminal extension (LE) at its C terminus (2b-tail). The 2b-tail imposes a 2-fold higher apparent Ca(2+) affinity and lower V(max). Previously, we assumed that LE is the sole functional region of the 2b-tail and that TM11 is a passive element providing an additional membrane passage. However, here we show that peptides corresponding to the TM11 region specifically modulate the activity of the homologous SERCA1a in co-reconstituted proteoliposomes and mimic the 2b-tail effect (i.e. lower V(max) and higher Ca(2+) affinity). Using truncated 2b-tail variants we document that TM11 regulates SERCA1a independently from LE, confirming that TM11 is a second, previously unrecognized functional region of the 2b-tail. A phylogenetic analysis further indicates that TM11 is the oldest and most conserved feature of the 2b-tail, found in the SERCA pump of all Bilateria, whereas LE is only present in Nematoda and vertebrates. Considering remarkable similarities with the Na(+),K(+)-ATPase α-ß interaction, we now propose a model for interaction of TM11 with TM7 and TM10 in the anchoring subdomain of the Ca(2+) pump. This model involves a TM11-induced helix bending of TM7. In conclusion, more than just a passive structural feature, TM11 acts as a genuine regulator of Ca(2+) transport through interaction with the pump.
Asunto(s)
Retículo Endoplásmico/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Humanos , Nematodos/enzimología , Nematodos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasa Intercambiadora de Sodio-Potasio/genéticaRESUMEN
The endoplasmic reticulum of most cell types mainly consists of an extensive network of narrow sheets and tubules. It is well known that an excessive increase of the cytosolic Ca(2+) concentration induces a slow but extensive swelling of the endoplasmic reticulum into a vesicular morphology. We observed that a similar extensive transition to a vesicular morphology may also occur independently of a change of cytosolic Ca(2+) and that the change may occur at a time scale of seconds. Exposure of various types of cultured cells to saponin selectively permeabilized the plasma membrane and resulted in a rapid swelling of the endoplasmic reticulum even before a loss of permeability barrier was detectable with a low-molecular mass dye. The structural alteration was reversible provided the exposure to saponin was not too long. Mechanical damage of the plasma membrane resulted in a large-scale transition of the endoplasmic reticulum from a tubular to a vesicular morphology within seconds, also in Ca(2+)-depleted cells. The rapid onset of the phenomenon suggests that it could perform a physiological function. Various mechanisms are discussed whereby endoplasmic reticulum vesicularization could assist in protection against cytosolic Ca(2+) overload in cellular stress situations like plasma membrane injury.
Asunto(s)
Permeabilidad de la Membrana Celular , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Estrés Mecánico , Animales , Células COS , Calcio/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Saponinas/farmacologíaRESUMEN
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral (86)Rb efflux markedly increased during the hyposmotic shock, from 0.50 +/- 0.03 min(-1) to a peak value of 6.32 +/- 0.07 min(-1), while apical (86)Rb efflux was negligible. Channel blockers, such as GdCl(3) (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 microM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 microM) and genistein (150 microM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in (86)Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K(+) and Cl(-1) efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral (86)Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl(-1) from 16HBE14o(-1) cells in response to cell swelling determines RVD efficiency.
Asunto(s)
Bronquios/metabolismo , Tamaño de la Célula , Células Epiteliales/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Bronquios/citología , Línea Celular Transformada , Tamaño de la Célula/efectos de los fármacos , Cloruros/metabolismo , Colforsina/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Presión Osmótica/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Radioisótopos de Rubidio/farmacología , Tirfostinos/farmacologíaRESUMEN
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K(+), Cl(-), and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl(-) current (I(Cl,swell)) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl(-) or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied I(Cl,swell) and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted I(Cl,swell), but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl(-), taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane.
Asunto(s)
Adenosina Trifosfato/metabolismo , Caveolina 1/fisiología , Membrana Celular/fisiología , Canales Iónicos/fisiología , Potenciales de la Membrana/fisiología , Taurina/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Células CACO-2 , Tamaño de la Célula , Humanos , Soluciones Hipotónicas , Proteínas de Microfilamentos , Presión OsmóticaRESUMEN
Light scattering is an empirical technique employed to measure rapid changes in cell volume. This study describes a new configuration for the method of light scattering and its corroboration by measurements of cell height (as a measure of cell volume). Corneal endothelial cells cultured on glass cover-slips were mounted in a perfusion chamber on the stage of an inverted microscope. A beam of light was focused on the cells from above the stage at an angle of 40 degrees to the plane of the stage. The scattered light intensity (SLI), captured by the objective and referred to as forward light scatter (FLS), increased and decreased in response to hyposmotic and hyperosmotic shocks, respectively. The rapid increase and decrease in SLI corresponded to cell swelling and shrinkage, respectively. Subsequently, SLI decreased and increased as expected for a regulatory volume decrease (RVD) and increase (RVI), respectively. These data are in agreement with measurements of cell height, demonstrating that the method of light scatter in FLS mode is useful for monitoring rapid changes in cell volume of cultured cells. Changes in SLI caused by gramicidin were consistent with cell volume changes induced by equilibration of NaCl and KCl concentrations across the cell membrane. Similarly, an additional decrease in SLI was recorded during RVD upon increasing K+ conductance by valinomycin. Decreasing K+ conductance of the cell membrane with Ba2+ changed the time course of SLI consistent with the effect of the K+ channel blocker on RVD. Bumetanide and dihydro-ouabain inhibited increases in SLI during RVI. In conclusion, FLS is a valid method for qualitative analysis of cell volume changes with a high time resolution.
Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Luz , Animales , Bovinos , Tamaño de la Célula/fisiología , Proyectos de Investigación/normas , Dispersión de RadiaciónRESUMEN
We investigated the involvement of intracellular and extracellular Ca2+ in the stimulation of Na+ transport during hyposmotic treatment of A6 renal epithelia. A sudden osmotic decrease elicits a biphasic stimulation of Na+ transport, recorded as increase in amiloride-sensitive short-circuit current (Isc) from 3.4 +/- 0.4 to 24.0 +/- 1.3 microA/cm2 (n = 6). Changes in intracellular Ca2+ concentration ([Ca2+]i) were prevented by blocking basolateral Ca2+ entry with Mg2+ and emptying the intracellular Ca2+ stores before the hyposmotic challenge. This treatment did not noticeably affect the hypotonicity-induced stimulation of Isc. However, the absence of extracellular Ca2+ severely attenuated Na+ transport stimulation by the hyposmotic shock, and Isc merely increased from 2.2 +/- 0.3 to 4.8 +/- 0.7 microA/cm2. Interestingly, several agonists of the Ca2+-sensing receptor, Mg2+ (2 mM), Gd3+ (0.1 mM), neomycin (0.1 mM), and spermine (1 mM) were able to substitute for extracellular Ca2+. When added to the basolateral solution, these agents restored the stimulatory effect of the hyposmotic solutions on Isc in the absence of extracellular Ca2+ to levels that were comparable to control conditions. None of the above-mentioned agonists induced a change in [Ca2+]i. Quinacrine, an inhibitor of PLA2, overruled the effect of the agonists on Na+ transport. In conclusion, we suggest that a Ca2+-sensing receptor in A6 epithelia mediates the stimulation of Na+ transport without the interference of changes in [Ca2+]i.
Asunto(s)
Calcio/metabolismo , Sodio/metabolismo , Urotelio/metabolismo , Animales , Calcio/farmacología , Línea Celular , Conductividad Eléctrica , Espacio Extracelular/metabolismo , Soluciones Hipotónicas/farmacología , Magnesio/metabolismo , Magnesio/farmacología , Concentración Osmolar , Presión Osmótica , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Receptores Sensibles al Calcio/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Urotelio/citología , Agua/metabolismo , Xenopus laevisRESUMEN
In renal A6 epithelia, an acute hypotonic shock evokes a transient increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through a mechanism that is sensitive to the P2 receptor antagonist suramin, applied to the basolateral border only. This finding has been further characterized by examining ATP release across the basolateral membrane with luciferin-luciferase (LL) luminescence. Polarized epithelial monolayers, cultured on permeable supports were mounted in an Ussing-type chamber. We developed a LL pulse protocol to determine the rate of ATP release (R(ATP)) in the basolateral compartment. Therefore, the perfusion at the basolateral border was repetitively interrupted during brief periods (90 s) to measure R(ATP) as the slope of the initial rise in ATP content detected by LL luminescence. Under isosmotic conditions, 1 microl of A6 cells released ATP at a rate of 66 +/- 8 fmol min(-1). A sudden reduction of the basolateral osmolality from 260 to 140 mosmol (kg H(2)O)(-1) elevated R(ATP) rapidly to a peak value of 1.89 +/- 0.11 pmol min(-1) (R(ATP)(peak)) followed by a plateau phase reaching 0.51 +/- 0.07 pmol min(-1) (R(ATP)(plat)). Both R(ATP)(peak) and R(ATP)(plat) values increased with the degree of dilution. The magnitude of R(ATP)(plat) remained constant as long as the hyposmolality was maintained. Similarly, a steady ATP release of 0.78 +/- 0.08 pmol min(-1) was recorded after gradual dilution of the basolateral osmolality to 140 mosmol (kg H(2)O)(-1). This R(ATP) value, induced in the absence of cell swelling, is comparable to R(ATP)(plat). Therefore, the steady ATP release is unrelated to membrane stretching, but possibly caused by the reduction of intracellular ionic strength during cell volume regulation. Independent determinations of dose-response curves for peak [Ca(2+)](i) increase in response to exogenous ATP and basolateral hyposmolality demonstrated that the exogenous ATP concentration, required to mimic the osmotic reduction, was linearly correlated with R(ATP)(peak). The link between the ATP release and the fast [Ca(2+)](i) transient was also demonstrated by the depression of both phenomena by Cl(-) removal from the basolateral perfusate. The data are consistent with the notion that during hypotonicity, basolateral ATP release activates purinergic receptors, which underlies the suramin-sensitive rise of [Ca(2+)](i) during the hyposmotic shock.
Asunto(s)
Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Soluciones Hipotónicas/farmacología , Riñón/metabolismo , Animales , Calcio/metabolismo , Calibración , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Riñón/citología , Riñón/efectos de los fármacos , Luciferasas/metabolismo , Mediciones Luminiscentes , Concentración Osmolar , Xenopus laevisRESUMEN
Polarized renal A6 epithelia respond to hyposmotic shock with an increase in transepithelial capacitance (C(T)) that is inhibited by extracellular Mg(2+). Elevation of free cytosolic [Ca(2+)] ([Ca(2+)](i)) is known to increase C(T). Therefore, we examined [Ca(2+)](i) dynamics and their sensitivity to extracellular Mg(2+) during hyposmotic conditions. Fura-2-loaded A6 monolayers, cultured on permeable supports were subjected to a sudden reduction in osmolality at both the basolateral and apical membranes from 260 to 140 mosmol (kg H(2)O)(-1). Reduction of apical osmolality alone did not affect [Ca(2+)](i). In the absence of extracellular Mg(2+), the hyposmotic shock induced a biphasic rise in [Ca(2+)](i). The first phase peaked within 40 s and [Ca(2+)](i) increased from 245 +/- 12 to 606 +/- 24 nM. This phase was unaffected by removal of extracellular Ca(2+), but was abolished by activating P2Y receptors with basolateral ATP or by exposing the cells to the phospholipase C (PLC) inhibitor U73122 prior to the osmotic shock. Suramin also severely attenuated this first phase, suggesting that the first phase of the [Ca(2+)](i) rise followed swelling-induced ATP release. The PLC inhibitor, the ATP treatment or suramin did not affect a second rise of [Ca(2+)](i) to a maximum of 628 +/- 31 nM. The second phase depended on Ca(2+) in the basolateral perfusate and was largely suppressed by 2 mM basolateral Mg(2+). Acute exposure of the basolateral membrane to Mg(2+) during the upstroke of the second phase caused a rapid decline in [Ca(2+)](i). Basolateral Mg(2+) inhibited Ca(2+) entry in a dose-dependent manner with an inhibition constant (K(i)) of 0.60 mM. These results show that polarized A6 epithelia respond to hyposmotic shock by Ca(2+) release from inositol trisphosphate-sensitive stores, followed by basolateral Ca(2+) influx through a Mg(2+)-sensitive pathway. The second phase of the [Ca(2+)](i) response is independent of the initial intracellular Ca(2+) release and therefore constitutes non-capacitative Ca(2+) entry.