Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 292(5): 1737-1748, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994059

RESUMEN

Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.


Asunto(s)
Ácido Deshidroascórbico/metabolismo , NADP/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Animales , Isótopos de Carbono , Línea Celular Tumoral , Humanos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Ratones
2.
Radiology ; 284(1): 180-190, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28240563

RESUMEN

Purpose To determine whether regions of low apparent diffusion coefficient (ADC) with high relative cerebral blood volume (rCBV) represented elevated choline (Cho)-to-N-acetylaspartate (NAA) ratio (hereafter, Cho/NAA ratio) and whether their volumes correlated with progression-free survival (PFS) and overall survival (OS) in patients with glioblastoma (GBM). Materials and Methods This retrospective analysis was approved by the local research ethics committee. Volumetric analysis of imaging data from 43 patients with histologically confirmed GBM was performed. Patients underwent preoperative 3-T magnetic resonance imaging with conventional, diffusion-weighted, perfusion-weighted, and spectroscopic sequences. Patients underwent subsequent surgery with adjuvant chemotherapy and radiation therapy. Overlapping low-ADC and high-rCBV regions of interest (ROIs) (hereafter, ADC-rCBV ROIs) were generated in contrast-enhancing and nonenhancing regions. Cho/NAA ratio in ADC-rCBV ROIs was compared with that in control regions by using analysis of variance. All resulting ROI volumes were correlated with patient survival by using multivariate Cox regression. Results ADC-rCBV ROIs within contrast-enhancing and nonenhancing regions showed elevated Cho/NAA ratios, which were significantly higher than those in other abnormal tumor regions (P < .001 and P = .008 for contrast-enhancing and nonenhancing regions, respectively) and in normal-appearing white matter (P < .001 for both contrast-enhancing and nonenhancing regions). After Cox regression analysis controlling for age, tumor size, resection extent, O-6-methylguanine-DNA methyltransferase-methylation, and isocitrate dehydrogenase mutation status, the proportional volume of ADC-rCBV ROIs in nonenhancing regions significantly contributed to multivariate models of OS (hazard ratio, 1.132; P = .026) and PFS (hazard ratio, 1.454; P = .017). Conclusion Volumetric analysis of ADC-rCBV ROIs in nonenhancing regions of GBM can be used to identify patients with poor survival trends after accounting for known confounders of GBM patient outcome.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Adulto , Anciano , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Colina/metabolismo , Medios de Contraste , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Compuestos Organometálicos , Estudios Prospectivos , Estudios Retrospectivos
3.
Radiology ; 283(1): 215-221, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27849434

RESUMEN

Purpose To explore the diffusion-tensor (DT) imaging-defined invasive phenotypes of both isocitrate dehydrogenase (IDH-1)-mutated and IDH-1 wild-type glioblastomas. Materials and Methods Seventy patients with glioblastoma were prospectively recruited and imaged preoperatively. All patients provided signed consent, and the local research ethics committee approved the study. Patients underwent surgical resection, and tumor samples underwent immunohistochemistry for IDH-1 R132H mutations. DT imaging data were coregistered to the anatomic magnetic resonance study and reconstructed to provide the anisotropic and isotropic components of the DT. The invasive phenotype was determined by using previously published criteria and correlated with IDH-1 mutation status by using the Freeman-Halton extension of the Fisher exact probability test. Results Nine patients had an IDH-1 mutation and 61 had IDH-1 wild type. All of the patients with IDH-1 mutation had a minimally invasive DT imaging phenotype. Among the IDH-1 wild-type tumors, 42 of 61 (69%) were diffusively invasive glioblastomas, 14 of 61 (23%) were locally invasive, and five of 61 (8%) were minimally invasive (P < .001). Conclusion IDH-mutated glioblastomas have a less invasive phenotype compared with IDH wild type. This finding may have implications for individualizing the extent of surgical resection and radiation therapy volumes.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Imagen de Difusión Tensora , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Adulto Joven
4.
Magn Reson Chem ; 55(5): 464-471, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27002682

RESUMEN

The apparent diffusion coefficients of 23 Na+ ions and the solute 2-fluoroethylamine present in the aqueous domain of a Myverol/water bulk bicontinuous cubic phase (BCP) were measured using pulsed field-gradient spin echo (PGSE) NMR spectroscopy. The measured values were dependent on the diffusion time interval, which is a characteristic of restricted diffusion. The translational motion of 23 Na+ and water in the aqueous channels of a cubic phase were simulated using a Monte-Carlo random walk algorithm, and the simulation results were compared with those from real PGSE NMR experiments. The simulations indicated that diffusion of 23 Na+ ions and water would appear to be restricted even on the shortest timescales available to PGSE NMR experiments. The micro-viscosity of the aqueous domain of the BCPs was estimated from the longitudinal relaxation times of 23 Na+ and 2-fluoroethylamine; this was three times higher than in free solution and suggests one of (but not the only) likely impediments to the release of hydrophilic drugs from stabilised aqueous dispersions of BCPs (cubosomes) when they are used therapeutically in vivo. Monte Carlo simulations of diffusive efflux from cubosomes suggest that the principal impediment to drug release is presented by a surfactant or lipid barrier at the cubosome surface, which separates the BCP aqueous channels from the bulk solution. The dynamics inferred from these studies informs quantitative predictions of drug delivery from cubosomes. Copyright © 2016 John Wiley & Sons, Ltd.

5.
Magn Reson Med ; 76(2): 391-401, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26388418

RESUMEN

PURPOSE: Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS: Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS: Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION: We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Piruvato Descarboxilasa/metabolismo , Ácido Pirúvico/farmacocinética , Proteínas Recombinantes/metabolismo , Zymomonas/enzimología , Animales , Activación Enzimática , Femenino , Genes Reporteros/fisiología , Células HEK293 , Humanos , Ratones , Ratones SCID , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Zymomonas/genética
6.
NMR Biomed ; 29(7): 882-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27120035

RESUMEN

There is an expanding research interest in high-grade gliomas because of their significant population burden and poor survival despite the extensive standard multimodal treatment. One of the obstacles is the lack of individualized monitoring of tumor characteristics and treatment response before, during and after treatment. We have developed a two-stage semi-automatic method to co-register MRI scans at different time points before and after surgical and adjuvant treatment of high-grade gliomas. This two-stage co-registration includes a linear co-registration of the semi-automatically derived mask of the preoperative contrast-enhancing area or postoperative resection cavity, brain contour and ventricles between different time points. The resulting transformation matrix was then applied in a non-linear manner to co-register conventional contrast-enhanced T1 -weighted images. Targeted registration errors were calculated and compared with linear and non-linear co-registered images. Targeted registration errors were smaller for the semi-automatic non-linear co-registration compared with both the non-linear and linear co-registered images. This was further visualized using a three-dimensional structural similarity method. The semi-automatic non-linear co-registration allowed for optimal correction of the variable brain shift at different time points as evaluated by the minimal targeted registration error. This proposed method allows for the accurate evaluation of the treatment response, essential for the growing research area of brain tumor imaging and treatment response evaluation in large sets of patients. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/patología , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Resultado del Tratamiento
7.
J Magn Reson Imaging ; 43(2): 487-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26140696

RESUMEN

PURPOSE: To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)-defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a major cause of treatment failure. DTI can identify invasive regions. MATERIALS AND METHODS: In all, 50 GBM patients were imaged preoperatively at 3T with anatomic sequences, DTI, dynamic susceptibility perfusion MR (DSCI), and multivoxel spectroscopy. The DTI and DSCI data were coregistered to the spectroscopy data and regions of interest (ROIs) were made in the invasive (determined by DTI), noninvasive regions, and normal brain. Values of relative cerebral blood volume (rCBV), N-acetyl aspartate (NAA), myoinositol (mI), total choline (Cho), and glutamate + glutamine (Glx) normalized to creatine (Cr) and Cho/NAA were measured at each ROI. RESULTS: Invasive regions showed significant increases in rCBV, suggesting angiogenesis (invasive rCBV 1.64 [95% confidence interval, CI: 1.5-1.76] vs. noninvasive 1.14 [1.09-1.18]; P < 0.001), Cho/Cr (invasive 0.42 [0.38-0.46] vs. noninvasive 0.35 [0.31-0.38]; P = 0.02) and Cho/NAA (invasive 0.54 [0.41-0.68] vs. noninvasive 0.37 [0.29-0.45]; P = < 0.03), suggesting proliferation, and Glx/Cr (invasive 1.54 [1.27-1.82] vs. noninvasive 1.3 [1.13-1.47]; P = 0.028), suggesting glutamate release; and a significantly reduced NAA/Cr (invasive 0.95 [0.85-1.05] vs. noninvasive 1.19 [1.06-1.31]; P = 0.008). The mI/Cr was not different between the three ROIs (invasive 1.2 [0.99-1.41] vs. noninvasive 1.3 [1.14-1.46]; P = 0.68). In the noninvasive regions, the values were not different from normal brain. CONCLUSION: Combining DTI to identify the invasive region with perfusion and spectroscopy, we can identify changes in invasive regions not seen in noninvasive regions.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Imagen por Resonancia Magnética , Imagen Multimodal , Adulto , Anciano , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular , Medios de Contraste , Imagen de Difusión Tensora , Femenino , Humanos , Aumento de la Imagen , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados
8.
Magn Reson Med ; 73(5): 1733-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24800934

RESUMEN

PURPOSE: Aldehyde dehydrogenase (ALDH2) is an emerging drug target for the treatment of heart disease, cocaine and alcohol dependence, and conditions caused by genetic polymorphisms in ALDH2. Noninvasive measurement of ALDH2 activity in vivo could inform the development of these drugs and accelerate their translation to the clinic. METHODS: [1-(13) C, U-(2) H5 ] ethanol was hyperpolarized using dynamic nuclear polarization, injected into mice and its oxidation in the liver monitored using (13) C MR spectroscopy and spectroscopic imaging. RESULTS: Oxidation of [1-(13) C, U-(2) H5 ] ethanol to [1-(13) C] acetate was observed. Saturation of the acetaldehyde resonance, which was below the level of detection in vivo, demonstrated that acetate was produced via acetaldehyde. Irreversible inhibition of ALDH2 activity with disulfiram resulted in a proportional decrease in the amplitude of the acetate resonance. CONCLUSION: (13) C magnetic resonance spectroscopy measurements of hyperpolarized [1-(13) C, U-(2) H5 ] ethanol oxidation allow real-time assessment of ALDH2 activity in liver in vivo.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Etanol/metabolismo , Animales , Nivel de Alcohol en Sangre , Disulfiram/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Oxidación-Reducción/efectos de los fármacos , Valor Predictivo de las Pruebas
9.
Magn Reson Med ; 71(1): 402-10, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23440731

RESUMEN

PURPOSE: The acquisition of ever increasing volumes of high resolution magnetic resonance imaging (MRI) data has created an urgent need to develop automated and objective image analysis algorithms that can assist in determining tumor margins, diagnosing tumor stage, and detecting treatment response. METHODS: We have shown previously that Minkowski functionals, which are precise morphological and structural descriptors of image heterogeneity, can be used to enhance the detection, in T1 -weighted images, of a targeted Gd(3+) -chelate-based contrast agent for detecting tumor cell death. We have used Minkowski functionals here to characterize heterogeneity in T2 -weighted images acquired before and after drug treatment, and obtained without contrast agent administration. RESULTS: We show that Minkowski functionals can be used to characterize the changes in image heterogeneity that accompany treatment of tumors with a vascular disrupting agent, combretastatin A4-phosphate, and with a cytotoxic drug, etoposide. CONCLUSIONS: Parameterizing changes in the heterogeneity of T2 -weighted images can be used to detect early responses of tumors to drug treatment, even when there is no change in tumor size. The approach provides a quantitative and therefore objective assessment of treatment response that could be used with other types of MR image and also with other imaging modalities.


Asunto(s)
Etopósido/uso terapéutico , Interpretación de Imagen Asistida por Computador/métodos , Linfoma/tratamiento farmacológico , Linfoma/patología , Imagen por Resonancia Magnética/métodos , Estilbenos/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C57BL , Estadificación de Neoplasias , Pronóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
10.
NMR Biomed ; 26(12): 1696-704, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23946252

RESUMEN

Hyperpolarized NMR is a promising technique for non-invasive imaging of tissue metabolism in vivo. However, the pathways that can be studied are limited by the fast T1 decay of the nuclear spin order. In metabolites containing pairs of coupled nuclear spins-1/2, the spin order may be maintained by exploiting the non-magnetic singlet (spin-0) state of the pair. This may allow preservation of the hyperpolarization in vivo during transport to tissues of interest, such as tumors, or to detect slower metabolic reactions. We show here that in human blood and in a mouse in vivo at millitesla fields the (13)C singlet lifetime of [1,2-(13)C2]pyruvate was significantly longer than the (13)C T1, although it was shorter than the T1 at field strengths of several tesla. We also examine the singlet-derived NMR spectrum observed for hyperpolarized [1,2-(13)C2]lactate, originating from the metabolism of [1,2-(13)C2]pyruvate.


Asunto(s)
Espectroscopía de Resonancia Magnética , Ácido Pirúvico/sangre , Animales , Bovinos , Línea Celular Tumoral , Femenino , Humanos , Campos Magnéticos , Ratones , Ratones Endogámicos C57BL , Albúmina Sérica Bovina/metabolismo , Soluciones , Factores de Tiempo
11.
Eur Biophys J ; 42(1): 3-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22644501

RESUMEN

q-Space plots obtained experimentally using pulsed field-gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) spectroscopy from water diffusing in red blood cells (RBCs) of different canonical (distinct variant) morphologies have "signature" features. The experimental q-space plots from suspensions of stomatocytes, echinocytes and spherocytes generated chemically had no diffraction features; in contrast a sample of blood from a patient with hereditary spherocytosis showed diffraction minima. To understand the forms of q-space plots, mathematical/geometrical models of discocytes, stomatocytes, echinocytes and spherocytes were used as restricting boundaries in simulations of water diffusion with Monte Carlo random walks. These simulations indicated that diffusion-diffraction minima are expected for each of the cell shapes considered. The absence of diffusion-diffraction minima in stomatocytes generated by dithiothreitol treatment was surmised to be due to non-alignment of the cells with the magnetic field of the NMR spectrometer. Differential interference contrast microscopy images of the chemically generated spherocyte and echinocyte suspensions showed them to be heterogeneous in cell shape. Therefore, we concluded that the shape heterogeneity caused the loss of the diffusion-diffraction features, which were observed in the more homogeneous sample from a patient with hereditary spherocytosis, and in the simulations of homogeneous cell suspensions. This understanding of factors that affect q-space plots from RBC suspensions will assist morphological studies of other cell and tissue types.


Asunto(s)
Eritrocitos/citología , Forma de la Célula , Imagen de Difusión por Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética , Cadenas de Markov , Modelos Teóricos , Método de Montecarlo , Esferocitosis Hereditaria/patología
12.
Bull Math Biol ; 72(6): 1323-33, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20127191

RESUMEN

We present two mathematical models that describe human red blood cells (RBCs) with morphologies that are attained naturally under certain patho-physiological conditions, namely stomatocytes and echinocytes. Muñoz San Martín et al. (Bioelectromagnetics 27:521-527, 2006) recently presented models of these shapes based on our previous set of parametric equations (Kuchel and Fackerell, Bull. Math. Biol. 61:209-220, 1999) that involve Jacobi elliptic functions and integrals. Thus, both discocytes and stomatocytes are described. Here, we derived the Cartesian forms of these new equations; and, in addition, present a realistic model of a Type III echinocyte, using prolate spheroids 'decorating' a central sphere at the vertices of an internal dodecahedron. The RBC models based on Cartesian equations have been used for representing the shape changes (morphological transformations or "morphing") that occur in RBCs under various experimental conditions; specifically, when the shape changes have been monitored by nuclear magnetic resonance (NMR) micro-imaging.


Asunto(s)
Forma de la Célula , Eritrocitos/patología , Modelos Teóricos , Humanos
13.
Eur Biophys J ; 39(1): 139-48, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19399492

RESUMEN

Pulsed field-gradient spin echo nuclear magnetic resonance spectroscopy of water diffusing in erythrocytes leads to diffusion interference and diffraction effects, which are visualised in q-space plots of signal intensity versus the magnitude of the spatial wave-number vector q. Interpretation of the features of these q-space plots has been aided by Monte Carlo random walk simulations of diffusion in lattices of virtual erythrocytes. Here, the effect of varying the orientation of the cells with respect to the direction in which diffusion is measured, on the appearance of q-space plots, was investigated, together with the effect of changing the cell volume. We show that these changes are reflected in the appearance of the plots in a way that is diagnostic of the microscopic geometry of the sample.


Asunto(s)
Tamaño de la Célula , Difusión , Eritrocitos/citología , Modelos Biológicos , Eritrocitos/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Factores de Tiempo , Agua/metabolismo
14.
Ther Adv Neurol Disord ; 12: 1756286419844664, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31205490

RESUMEN

Our inability to identify the invasive margin of glioblastomas hampers attempts to achieve local control. Diffusion tensor imaging (DTI) has been implemented clinically to delineate the margin of the tumor infiltration, its derived anisotropic (q) values can extend beyond the contrast-enhanced area and correlates closely with the tumor. However, its correlation with tumor infiltration shown on multivoxel proton magnetic resonance spectroscopy1 (MRS) and perfusion magnetic resonance imaging (MRI) should be investigated. In this study, we aimed to show tissue characteristics of the q-defined peritumoral invasion on MRS and perfusion MRI. Patients with a primary glioblastoma were included (n = 51). Four regions of interest were analyzed; the contrast-enhanced lesion, peritumoral abnormal q region, peritumoral normal q region, and contralateral normal-appearing white matter. MRS, including choline (Cho)/creatinine (Cr), Cho/N-acetyl-aspartate (NAA) and NAA/Cr ratios, and the relative cerebral blood volume (rCBV) were analyzed. Our results showed an increase in the Cho/NAA (p = 0.0346) and Cho/Cr (p = 0.0219) ratios in the peritumoral abnormal q region, suggestive of tumor invasion. The rCBV was marginally elevated (p = 0.0798). Furthermore, the size of the abnormal q regions was correlated with survival; patients with larger abnormal q regions showed better progression-free survival (median 287 versus 53 days, p = 0.001) and overall survival (median 464 versus 274 days, p = 0.006) than those with smaller peritumoral abnormal q regions of interest. These results support how the DTI q abnormal area identifies tumor activity beyond the contrast-enhanced area, especially correlating with MRS.

15.
J Phys Chem B ; 112(21): 6636-45, 2008 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-18457445

RESUMEN

NMR line shapes of the lipid and aqueous species in bicontinuous cubic phase (BCP) samples prepared by centrifugation are inhomogeneously broadened. The broadening of the lipid peaks is removed by magic-angle spinning (MAS). In this work, we studied the mechanism of this broadening using (1)H and (13)C NMR spectroscopy of a myverol/water BCP. It is demonstrated that the inhomogeneity possesses an intrinsic contribution that is independent of instrumental or setup factors and can be attributed to the microscopic organization of the BCP bilayer. A mechanism of the inhomogeneous broadening is proposed, which involves a spatially nonuniform diamagnetically induced magnetic field determined by the mesoscopic structure and the diamagnetic susceptibilities of the two BCP domains. The proposed mechanism does not require that molecular reorientation of the lipid be slow for the inhomogeneous broadening to survive. We discuss how this inhomogeneous broadening can be employed as a probe of compositional uniformity and microscopic organization of BCP samples.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Lípidos/química
16.
Biophys J ; 92(5): 1770-6, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17158568

RESUMEN

Two resonances are seen in the (1)H-NMR spectrum of water in erythrocyte suspensions spun at the magic angle, a broad signal from water inside the cells and a sharp signal from extracellular water. The splitting is a result of a true chemical shift difference between the two populations, as bulk magnetic susceptibility effects are negated at the magic angle. The pH dependence of this chemical shift difference in erythrocyte suspensions was investigated. Splittings of 16.7 +/- 0.1, 18.9 +/- 0.9, and 21.0 +/- 0.2 Hz were observed at pH 6.0, 7.0, and 8.5, respectively; however, this was accompanied by a change in the mean cell volume. To account for any contribution from the volume change, the osmolality of the pH 6.0 and 8.5 suspensions was adjusted to equalize the cell volume between samples at the three pHs. Under these conditions, the splitting was 18.3 +/- 0.1 and 18.6 +/- 0.1 Hz at pH 6.0 and 8.5, respectively. Thus the observed chemical shift difference between the two water resonances was independent of pH. Therefore the splitting of the water resonance was concluded to be directly proportional to the protein concentration within the cell. Measurements of the magnetic susceptibility difference between the two compartments were also carried out, yielding a value of 2.0 +/- 0.2 x 10(-7) (SI units) for erythrocytes in isotonic saline at pH 7.0.


Asunto(s)
Eritrocitos/fisiología , Imagen por Resonancia Magnética/métodos , Agua/química , Tamaño de la Célula , Membrana Eritrocítica/fisiología , Humanos , Concentración de Iones de Hidrógeno , Proteínas/química
17.
J Neurosurg ; 126(1): 234-241, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27058207

RESUMEN

OBJECTIVE Diffusion tensor imaging (DTI) has been shown to detect tumor invasion in glioblastoma patients and has been applied in surgical planning. However, the clinical value of the extent of resection based on DTI is unclear. Therefore, the correlation between the extent of resection of DTI abnormalities and patients' outcome was retrospectively reviewed. METHODS A review was conducted of 31 patients with newly diagnosed supratentorial glioblastoma who underwent standard 5-aminolevulinic acid-aided surgery with the aim of maximal resection of the enhancing tumor component. All patients underwent presurgical MRI, including volumetric postcontrast T1-weighted imaging, DTI, and FLAIR. Postsurgical anatomical MR images were obtained within 72 hours of resection. The diffusion tensor was split into an isotropic (p) and anisotropic (q) component. The extent of resection was measured for the abnormal area on the p, q, FLAIR, and postcontrast T1-weighted images. Data were analyzed in relation to patients' outcome using univariate and multivariate Cox regression models controlling for possible confounding factors including age, O6-methylguanine-DNA-methyltrans-ferase methylation status, and isocitrate dehydrogenase-1 mutation. RESULTS Complete resection of the enhanced tumor shown on the postcontrast T1-weighted images was achieved in 24 of 31 patients (77%). The mean extent of resection of the abnormal p, q, and FLAIR areas was 57%, 83%, and 59%, respectively. Increased resection of the abnormal p and q areas correlated positively with progression-free survival (p = 0.009 and p = 0.006, respectively). Additionally, a larger, residual, abnormal q volume predicted significantly shorter time to progression (p = 0.008). More extensive resection of the abnormal q and contrast-enhanced area improved overall survival (p = 0.041 and 0.050, respectively). CONCLUSIONS Longer progression-free survival and overall survival were seen in glioblastoma patients in whom more DTI-documented abnormality was resected, which was previously shown to represent infiltrative tumor. This highlights the potential usefulness and the importance of an extended resection based on DTI-derived maps.


Asunto(s)
Imagen de Difusión Tensora , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Neoplasias Supratentoriales/diagnóstico por imagen , Neoplasias Supratentoriales/cirugía , Adulto , Anciano , Ácido Aminolevulínico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Medios de Contraste , Metilación de ADN , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Glioblastoma/genética , Glioblastoma/mortalidad , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Pronóstico , Estudios Retrospectivos , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/mortalidad , Análisis de Supervivencia , Carga Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
PLoS One ; 12(5): e0176528, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28520730

RESUMEN

PURPOSE: To develop an image analysis technique that distinguishes pseudoprogression from true progression by analyzing tumour heterogeneity in T2-weighted images using topological descriptors of image heterogeneity called Minkowski functionals (MFs). METHODS: Using a retrospective patient cohort (n = 50), and blinded to treatment response outcome, unsupervised feature estimation was performed to investigate MFs for the presence of outliers, potential confounders, and sensitivity to treatment response. The progression and pseudoprogression groups were then unblinded and supervised feature selection was performed using MFs, size and signal intensity features. A support vector machine model was obtained and evaluated using a prospective test cohort. RESULTS: The model gave a classification accuracy, using a combination of MFs and size features, of more than 85% in both retrospective and prospective datasets. A different feature selection method (Random Forest) and classifier (Lasso) gave the same results. Although not apparent to the reporting radiologist, the T2-weighted hyperintensity phenotype of those patients with progression was heterogeneous, large and frond-like when compared to those with pseudoprogression. CONCLUSION: Analysis of heterogeneity, in T2-weighted MR images, which are acquired routinely in the clinic, has the potential to detect an earlier treatment response allowing an early change in treatment strategy. Prospective validation of this technique in larger datasets is required.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
19.
World Neurosurg ; 92: 159-165, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27185650

RESUMEN

BACKGROUND: Although targeted by radiotherapy, recurrence in glioblastoma occurs mainly periresectionally owing to tumor infiltration. An increase in the apparent diffusion coefficient (ADC) has been shown in the large high-T2 area on magnetic resonance imaging posttreatment; however, until now ADC has not been investigated directly in the more relevant periresectional area. METHODS: Histogram analysis was used to assess periresectional ADC values in patients with glioblastoma postradiotherapy versus preradiotherapy. Periresectional ADC values starting at 0-5 mm in 5-mm increments up to 20-25 mm were extracted and compared using 2-way repeated-measurements analysis of variance. RESULTS: Mean ADC values directly adjacent to the resection area (0-5 mm) were significantly higher postradiotherapy compared with preradiotherapy (P = .017). ADC values in the 0- to 5-mm region were also higher than those in 5- to 10-, 10- to 15-, and 15- to 20-mm regions (P < .05). Regional standard deviations in ADC values were higher postradiotherapy compared with preradiotherapy for the 0- to 5-mm region up to the 15- to 20-mm region, inclusive (P < .05); however, Cox regression analysis showed no survival benefits from the increased ADC in the 0- to 5-mm region postradiotherapy. CONCLUSIONS: Increased ADC values, representing a decrease in infiltrative tumor load, were demonstrated in a limited direct periresectional area. This finding adds to previous studies evaluating ADC response in the larger high-T2 area in relation to survival.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Imagen de Difusión por Resonancia Magnética , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Resultado del Tratamiento , Anciano , Neoplasias Encefálicas/mortalidad , Estudios de Cohortes , Femenino , Glioblastoma/mortalidad , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Análisis de Regresión , Análisis de Supervivencia , Carga Tumoral
20.
Contrast Media Mol Imaging ; 9(2): 182-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523064

RESUMEN

The spin polarization-induced nuclear Overhauser effect (SPINOE) describes the enhancement of spin polarization of solvent nuclei by the hyperpolarized spins of a solute. In this communication we demonstrate that SPINOEs can be observed between [1,4-(13) C2 ]fumarate, hyperpolarized using the dissolution dynamic nuclear polarization technique, and solvent water protons. We derive a theoretical expression for the expected enhancement and demonstrate that this fits well with experimental measurements. Although the magnitude of the effect is relatively small (around 2% measured here), the SPINOE increases at lower field strengths, so that at clinically relevant magnetic fields (1.5-3 T) it may be possible to track the passage through the circulation of a bolus containing a hyperpolarized (13) C-labeled substrate through the increase in solvent water (1) H signal.


Asunto(s)
Radioisótopos de Carbono/química , Marcadores de Spin , Agua/química , Fumaratos/química , Espectroscopía de Resonancia Magnética/métodos , Protones , Soluciones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA